APPLICATION OF SYMBOLICAL KINEMATICS
TO REAL-TIME VEHICLE DYNAMICS

Final Technical Report

by
A. Kecskeméthy and Th. Krupp
(August 1995)
United States Army
EUROPEAN RESEARCH OFFICE OF THE U.S. ARMY
London England
CONTRACT NUMBER N68171-94-C-9091

Dr.-Ing. A. Kecskeméthy

Approved for Public Release; distribution unlimited

N
ELECTE!
SER,218]1995] 1

19930926 139




Form Approved

REPORT DOCUMENTATION PAGE e ovesorss

P Oiat 0 WO 1A DA PR (OF 1RIL (OMECIRON OF AIOIMI OGN = UM AIT 10 derrone | Muned e *=-LOALE . cACIUEIng To Lume 107 | v rrwmenn IAULIVETIONY VMl EMn TINInG B21 8 Ot
IR ng St amtainann (R it Arrard, snd COMDIPUN Jnd trvirmere) (Ae ( OHACTIOA 8f iy maran A rg COmrmenit (EASEBIAY 1AL Dunt QER FIIMNIIE 8 sy AR 430wt OF thay
CBite1eon Bl HAIN M AR 1ACIIING LGQEEDAY 10¢ ¢ FOUinn (Rt DurBrn 10 WA On e spavittent \revet . D10 dte (O 1AI0IM 410N QOCTINOm and $r00nL 1113 jeNevron
Oemin nnhom sy, Vit 1104, Arhnnton, va 11J0)210). sra 0 ins Ottarr 0l Mimapemerat +nd SuaNE1 £ A0Fr= O RemCUOn Freyedt (0104.5188). Wawneqion, OC JOVW0L.

2. REPORT DATE J. REPORT TYPE ANO DATES COVIERIOD

Final Aug. 1, 1994 - Aug. 31, 1995
4. TITLE.AND'SUBTITLE - = === = . ’ 3. FUNCING NUMBLERS
Application of Symbolical Kinematics to Real-Time C N68171-94-C-9091
Vehicle Dynamics PR WK2Q6C-7349-AN01

1. AGINCY USE ONLY (Ledve blinx)

6. AUTHOR(S)

Andrés Kecskeméthy

Thorsten Krupp

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS{ES)
Fachgebiet Mechatronik _
Gerhard-Mercator-Universitdt - GH Duisburg FG 16-95-02

Lotharstr. 1
47058 Duisburg

Germany
9. SPCNSCAING .« MCNITORING AGINCY NAME(S) AND AQORESS{ES)

European Research Office - USARDSG-UK
Fiscal Office

Edison House
223 01d Marylebone Road , .
London NW1 5TH, United Kingdom b
11, SUPPLESSENTARY NOTES

Prepared in cooperation with

Dr. Roger Wehage ‘
System Simulation & Tech. Division, AMSTA-RY, U.S. Army TARDEC

122, SiISTAIBUIICN I AVAILABILTY STATINENT - TR TE TS XS oN I ebens

8. PERFCRMING ORGANIZATICN
AREPORT NUMBER

UNCLASSIFIED

13. ABSTRALT (Masimum 200 wceds)

A computer-oriented integrated approach for the automatic generation of symbolical
expressions for the position, velocity and acceleration problems of spatial,
multiple-loop multibody systems is developed. All processing steps, from the
topological analysis of the interconnection structure to the final production of
executable statements in a standard programming language, such as "C", are integrated
into one single single piece of code, written in Mathematica. Special subsystems, such
as planar or spherical mechanism parts, subsystems featuring closed-form, i.e.,
analytic solutions, and subsystems which have to be solved iteratively, are recognized
and processed accordingly. These tasks involve, among others, the generation of
minimal cycle sets, the detection of invariant transformation groups in loops, and thel
recognition of recursive solution flows in multiple-loop mechanisms. All processing i
steps are fully operational and produce the desired expressions from a minimal input |
comprising the system adjacency matrix, the list of variable joint parameters, and the
desired set of input variables. A SOLVAS-compatible interface insures the
applicability of the package in the setting of vehicle dynamics by its integration in
the libraries developed at the System Simulation & Technical Division Group at U.S.
Army TARDEC. The procedures and the code are illustrated by several examples.

13, SUBJECT TERMS 15. NUM2LR CF 2aGt$
Kinematics of vehicles, closed form solutions, .
sxmbolical computation, multibody systems, T6. PRICE COOL
closed-loop analysis

7 SECUAITY CLASSIFICATION [1E. SICURITY CLASSIFICATICH | 19. SECURITY CLASSIFICATICN 30, UAUTATICN CF 23572405
OF REPORT OF THIS PAGE Of AassirsCT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7530-01-7B0-5500 $1amcatd ;Olﬂ‘:?S’ ;’Re‘v 2.85)
Pravenin—a Dy JAM Wa 1141
298-432




Contents

1 Introduction

1.1
1.2
1.3

1.4

Statement of the Problem . . . . . .. .. ... ... .......
Historical Background . . . .. .. .. ... ... ... .. ... L.
Scope of the Work . . .. .. .. ... ... oo

Summary of the Most Important Results . . . ... .. ... . ...

2 Basic Kinematic Relationships

2.1
2.2
2.3
24

2.5
2.6

4.1
4.2
4.3
4.4

Kinematical Issues in Multibody Dynamics . . . . . . . .. .. ...
Relative and Absolute Kinematics . . . . . . . ... ... ... ...
Kinematics of Serial Chains . . . . . . .. .. ... ... ... ...
Topological and Geometric Parameters . . . . ... ... ... ...
2.4.1 Basic Topological Information . . . .. ... ... ... ...
2.4.2 Basic Geometric Information. . . . . . ... ...
Description of System Structure . . . . . . .. ... ... ... ...
Examples . . . . . .
2.6.1 Planar Manipulator . . . . . . . .. .. ... oL
2.6.2 Wheel Suspension of a Trailer . . . .. ... .. ... ...,

2.6.3 A Heavy-Load Manipulator . . . . ... ... ... ... ..

Determination of Clusters

Detection of Independent Kinematical Loops

Fundamentals of Cycle Bases . . . .. .. ... ... ... ...,
Methods for Determination of Cycle Bases . . . . . .. .. ... ..
Proposed Algorithm for Finding a Minimal Cycle Basis . . . . . ..

Example . . . . . . . e

12

12

14
14
16
17
19
19
20
21
21
21
23
24

28

32




5 Position Analysis of a Single Loop

5.1 Projection Operators . . . . . . .. .. .. .. ... ... .. ...
5.2 Possible Structures of the Constraint Equations . . . . .. .. . ..
5.3 Implementation of the Algorithm . . . . . .. .. ... ... ...,

54 Examples . . . .. .

Generation of Velocity and Acceleration Expressions

6.1 Description and Comparison of Methods for Generation of Velocity
Equations . . . . . ...

6.1.1 Velocity Analysis of a Spatial Four-Bar Mechanism . . . . .
6.2 Implementation of Velocity Processing Procedures . . . . . .. . ..
6.2.1 General Structure of Jacobians . . . . .. ... ... . ...
6.2.2 Basic Cases Leading to Simplification of Velocity Expressions
6.3 Generation of Acceleration Expressions . . . . . . . ... ... ...

6.4 Example: Wheel Suspension of a Trailer . . . .. ... .. ... ..

Generation and Solution of Kinematical Networks
7.1 Determination of Loop-Coupling Conditions . . . . .. .. .. ...
7.2 Selection of an Appropriate Solution Flow . . . ... ... ... ..

7.3 Example: The Heavy-Load Manipulator . . . . . . . ... ... ...

Implicit Solutions for Non Recursively Solvable Subsystems

8.1 Identification of Secondary Joints . . . . . . . .. .. ... ... ..
8.1.1 Example: Five-Point Wheel Suspension . . . . . . . .. ...

8.2 Formulation of Cut-Set Equations . . . . . .. .. ... ... . ...
8.2.1 Constraint Equations for a Spherical Joint . . . . . . .. ..

8.2.2 Constraint Equations for the Planar Revolute Joint . . . . .

41
43
46
48

51

57

57
a9
62
63
64
67
67

69

69

72

74

76




I |

9 Global Kinematics 82
9.1 Global Representation of System Topology . . . . . .. ... .... 82
9.1.1 The Arc Connectivity Matrix C, . .. .. [ 82

9.1.2 The Chord Connectivity Matrix C. . ... ... ... ... 82

9.1.3 The Path-Tracing Matrix B, . ... ... ... ....... 83

9.1.4 The Loop Closure Matrix B, . .. ... ... ... ..... 83

9.2 Generation of System-Topology Matrices . . . ... ... ... ... 83
9.3 Generation of Absolute Kinematics . . . . .. ... ... ... ... 84
9.4 Example: Wheel Suspension of a Trailer . .. ... .. .. ... .. 84
10 Overview of the Implementation 87
10.1 Main Functions of the Package . . . . . .. .. ... .. .. ... .. 89
10.2 Example of a Complete Kinematics Processing Session . . . . . .. 95

11 Example: A Comprehensive Mixing Unit of the Control Mecha-

nism of a Helicopter 96
12 Conclusions 106
13 List of Project-Related Publications and Interim Reports 107
14 List of Participating Scientific Personnel 107
A Closed Form Solutions for the Mixer Unit 112

a e, A me héx
Locunsslion Fop

523
g

s vt b o et




List of Figures

O 00 =~ O Ut W N e

e e e =
Y i ==}

16
17
18
19
20
21
22
23
24
25
26
27

Global Kinematics . . . . . . . . . .. .. L oo
Kinematics of multibody systems with closed loops . . . . . . . ..
Sequence of transformations . . . . ... ... ... . 0L
Comparison of tree-type and closed-loop systems. . . . . ... ...
Planar manipulator with twoaxes . . . . . . ... ... ... ... ..
Wheel suspension of a trailer . . . . . ... .. ...
A heavy-load manipulator . . . .. .. ... oo L
Kinematic structure of the heavy-load manipulator . . . . . . . ..
[conic model of the heavy-load manipulator . . . ... ... . ...
Interconnecting graph for the heavy-load manipulator . . . . . . ..
Example of a graph containing two leaves and one bridge . . . . . .
Extraction of shortest paths . . . . . ... ... ... ... .. ...
Flow diagram for computation of a minimal basis . . . . . .. . ..
Example for detection of minimal cycle basis . . . . . ... ... ..
Processing steps for the minimal-cycle-basis example . . . . . . ..
A single kinematical loop . . . . . ... ..o
Basic structureof aloop . . . . . . ...
Grouping of transformations . . . . .. ... ... ... ..o
Projection of a spatial transformation to a scalar number . . . . . .
Projection operations . . . . . . . . ... ...
Flow diagram for stage I of single-loop processing algorithm

Flow diagram for stage II of single-loop processing algorithm . . . .
An elbow manipulator and its Denavit-Hartenberg parameters . . .
I[PM-matrices for the elbow manipulator . . . . . .. ... .. ...
Decomposition of a single loop for velocity analysis . . . . . . ...
A spatial four-bar mechanism . . . .. ... ...

A spatial mechanism with a planar joint . . . .. ... .. ... ..

23

r




|

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Model of the general kinematical transformer . . . .. .. ... .. 70
A joint connecting several bodies . . . .. ... ..o 70
A recursively solvable system . . . . . .. ... 74
A non-recursively solvable system . . . . ... ..o 74
Kinematic networks for the heavy-load manipulator . . . . . . . .. 75
Rear axis of a Daimler-Benz W201 . . . . . ... ... .. .. ... 78
Schematic model of the five-point wheel suspension . . . . .. ... 79
Interconnection graph for a five-point wheel suspension . . . . . .. 79
Constraint equations for a spherical joint . . . . .. .. .. ... .. 80
Topological structure of the trailer wheel suspension . . . . . . . .. 85
Overview of the modules of the SYMKIN package . . . . . ... .. 87
Hierarchical decomposition of a complex multibody system . . . . . 88
Function invokation hierachy of the SYMKIN package . . . . . . .. 94
Mathematica-session for the trailer wheel suspension . . . .. . .. 95
Helicopter Messerschmidt-Bélkow-Blohm BO 105 . . . . . ... .. 96
Control mechanism of the main rotor . . . . . .. .. ... .. ... 97
Mixer unit of the control mechanism of the main rotor . . . . . .. 98
Schematic view of the mixerunit . . . . . .. ... ... ... ... 99
Input data for a Mathematica session of the mixer unit . . .. ... 100
Interconnection graph of the mixerunit . . . . . .. ... ... ... 101
Loops of the mixerunit. . . . . .. ... ... ... ...... 102
Kinematical network of the mixer unit . . . . ... ... ... ... 102




List of Tables

© 0o I O OU

11
12
13

Macros for description of basic transformations . . . . . ... ... 22
Generated paths and loops for the minimal-cycle-basis example . . 40

Comparison of computational efficiency for different velocity analysis

methods . . . . . .. 62
Joints yielding linear coupling conditions . . . . . . ... ... ... 73
Basic input parameters for kinematic processing modules . . . . . . 92
Main routines for the topological processing . . . . .. .. .. ... 92
Routines for the treatment of single loops . . . . . ... .. ... .. 93
Routines for the treatment of clusters . . . . . ... ... ... ... 93
Routines for global processing . . . . . .. ... ... .. ... ... 94
Joints of the helicopter mixerunit . . . . . . ... ... .. ... .. 98

CPU-time for generation of symbolical equation for the mixer unit . 104
Number of symbolical equations for the mixer unit . . . ... ... 105

Total number of operations for the mixer unit . . . .. .. .. ... 105




1 Introduction

1.1 Statement of the Problem

For the design of modern road vehicles, exact real-time computer simulation is
becoming an indispensable requirement. Because of the inherent model complexity,
however, such highly efficient models are only feasible with the help of fast computer
equipment and/or customized model equations. The purpose of this work is to
exploit the potentials of optimization of model efficiency by incorporation of closed-
form solutions in the kinematics processing, and to device schemes for an automated
generation of such solutions for the general spatial multiple-loop topologies that are
typical in vehicle models.

1.2 Historical Background

The simulation of road vehicles is a subject of growing scientific interest since now
almost 20 years. The objective of these efforts has been to achieve computer models
that mimic the real system as exact and efficiently as possible and thus make it
possible to replace experimental setups which are costly and limited in their possi-
bilities with software components that are cheap and flexible. Hereby, the approach
of multibody analysis, i.e., the analysis of the motion of a set of rigid bodies con-
nected through ideal joints, has evolved as one of the principal investigation tools
for the analysis of comfort, noise and stability properties of vehicles.

Early approaches for the computer-oriented analysis of multibody dynamics focused
primarily on the broad applicability of the resulting code, using as building blocks
rather simple but highly generic elements for the corresponding equations. In these
approaches, the model for the overall system is expressed by a large sparse matrix
resulting from the assembly of the individual element models. This model is then
solved by applying appropriate numeric algorithms to it, that, in order to work
properly, have to be interweaved with the model equations in a highly sophisticated
manner. The described methodology emanated from the work of Orlandea, Chase
and Calahan 1979 and has since then served as a paradigm for a large number of
related approaches, among which are the works of Wehage and Haug 1982, Nikravesh
and Haug 1982 and Garcia de Jalén et al. 1987. All these approaches have in common
that they do not focus primarily on optimizing the generated equations with respect
to particular geometrical properties, but try to apply general numerical methods
which are also used in other application fields. This is expressed most clearly in
the introduction of the paper Orlandea 1987: “When ADAMS was conceived, the
basis for the formulation was to look at efficient numerical algorithms and then to
formulate the general mechanical problem so that it fits the numerical methods”.




Besides this so-called numerical methods, several further approaches were developed,
mostly in Europe, in which either graph-theoretic methods (Wittenburg 1977) or
symbolical processing schemes (Kreuzer 1979) are applied. These methods, termed
minimal coordinate approaches, yield systems of pure ordinary differential equations
of minimal order which are much more eflicient and reliable than the equations ob-
tained by the sparse matrix approaches. Furthermore additional gains in effectivity
can be achieved by taking into consideration the particular geometric and/or dy-
namical properties of the system at hand and eliminating redundant operations from
the outset. The minimal coordinate approach has been the basis for a number of
related methods, such as the vector network method (Andrews and Kesavan 1975),
Kane’s method (Kane and Levinson 1985), and the method proposed by the author
(Hiller et al. 1986). The advantages of the minimal coordinate approach are its
high computational efficiency, the tight relationship between the computer model
and the underlying mechanical system, and the simplicity and thus better compre-
hensibility of the underlying algorithms and intermediate results for the practising
engineering.

A related substantial contribution to the evolution of efficient multibody simulation
software has been to incorporate methods developed for the dynamic analysis of
robotic systems (Walker and Orin 1982) into the methodology for treating general
multibody systems. In particular, the so-called order(n) methods (Brandl, Johanni
and Otter 1986), have been used as a basis for powerful, parallelizable codes (Tsal
and Haug 1991a and Tsai and Haug 1991b). These contributions have given further
evidence that a sound mechanical modeling helps to boost simulation performance
and quality even for large complex structures such as the vehicle systems on which
this research is focused.

Due to these accomplishments, the minimal coordinate approaches have gained
increasing acceptance in the last decade, and have become the method of choice
when highly efficient and robust code is an issue. However, a serious drawback of
the minimal coordinate approach has been that the equations striven for are very
difficult to obtain, so that even with the help of modern computer software the
task of generating optimized expressions for the dynamical equations of systems
of high complexity such as vehicles, trailers, caterpillars, etc. have remained until
recently an open issue. This is a consequence of a phenomenon known as interme-
diate expression swell (Nielan and Kane 1986), which describes the rapid growth of
the number and size of the intermediate terms emerging in the process of equation
generation. This phenomenon is responsible for most processing algorithms falling
short of reaching the end of the equation-generation algorithm due to storage-space
limitations — even for subsystems of modest complexity such as a double-wishbone
wheel suspension.

To tackle this problem, two alternatives have been proposed. One is to describe the
nonlinear motion behaviour of the constituent parts of the system by polynomial
approximation. Here, a complex system is dissected into simpler components, each
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component featuring a number of interconnected bodies and a number of indepen-
dent variables, termed local degrees of freedom. For each component, the motion of
the bodies of interest is determined as a function of the degrees of freedom at char-
acteristic support points through which a polynomial of limited order (typically
of order three) is fitted. These polynomials are then used to interpolate, during
simulation, the quantities sought for, avoiding the need to evaluate complicated
mathematical expressions from the outset (Wehage and Belczynski 1992, Wehage
and Belczynski 1993). It goes without saying that this approach leads to very fast
programs. Its only drawback is the exponential grow of the memory and time re-
quirements for preprocessing and subsequent evaluation with the number of degrees
of freedom contained in the individual components.

The second alternative is to avoid the phenomenon of intermediate expression swell
by taking better account of the kinematic properties of the system at hand. Here,
the two issues of importance are the topological and the geometric parameters of
the system. The topological parameters comprise information about subsystems into
which the system can be dissected and the pattern of the relationships between the
dissected subsystems that have to be considered for re-assembly. The knowledge of
geometrical parameters, on the other hand, makes it possible to detect and exploit
simplifications in the underlying expressions which can lead to performance boosts of
a factor of up to 20 when compared to the generic case. By using such expressions at
the kinematical level, the dynamic simulation becomes also highly efficient, and the
performance of the resulting simulation code become comparable to that of table-
lookup methods. The problem with this approach lies in the complicated topological
and geometric processing which has to be carried out prior to the evaluation of the
dynamical equations. Until very recently, this problem seemed to be so colossal,
that virtually no investigator dared to tackle it, not to say to develop a program
for dynamic analysis in which such a scheme was implemented.

As a starting point for such a processing, a number of classical and newer results
exist in the realm of pure kinematics. For example, it is known that for a single
loop featuring six revolute skew joints with unknown rotations, the resulting explicit
equation for a single joint variable is a polynomial of degree sixteen (Lee et al. 1990,
Raghavan and Roth 1993). However, for many systems with special geometry, as for
example loops exhibiting three joints with intersecting or parallel axes, the degree
of the polynomial drops to two, and is possible not only to state, but also to solve
the closure equation in closed form (Woernle 1988). By applying some notions from
the theory of continuous groups, it is possible to design a fully automatic scheme
for detecting and generating such closed-form solutions, as was demonstrated in
Kecskeméthy and Hiller 1992. The multiple loop case can then be treated by first
dissecting the mechanism into a set of independent loops and then assembling the
local solutions of the individual loops into a global system of equations that can be
solved recursively for many practical cases (Kecskeméthy 1993b). Another technique
is to successively remove resolvable segments or so-called Assur groups from the
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overall system until no bodies remain (Fanghella 1988, Fanghella and Galletti 1993).
Howewer, none of these methods have been implemented so far.

1.3 Scope of the Work

The purpose of this research is to develop automated procedures that are able to
take a general topological and parametric kinematic description of the rigid body
part (or of the undeformed deformable bodies) of a vehicle and generate symbolic
equations describing the motion of all bodies of interest —at the position, velocity
and acceleration level— as functions of the independent joint variables and their
first and second time derivatives.

The solution of the problem described above can be regarded to consist of two parts.
One part, denoted as the relative kinematics, is to determine the relative motion at
all joints as functions of the independent joint variables. In the second part, termed
the absolute kinematics, the motion of the bodies 1s computed from the known
values of the relative motion at all joints. Clearly the difficulty of the project lies
in solving the relative kinematics. It is here where the closure of rigid body chains
into loops or systems of loops has to be taken into account and the relationships
between the motion of the bodies contained in the loops have to be established.
This comprises not only the selection of appropriate closure conditions on a loop-
by-loop basis, but also the determination of appropriate loops that minimize the
effort for establishing the aforementioned relationships. Typically these relationships
are highly nested. Thus the main goal of this research is to device an algorithmic
approach for gradually dividing a given multibody system into smaller and smaller
subsystems, such that, eventually, the subsystems arrived at are either recursively
solvable multiple-loop systems, tree-type systems, or clusters of bodies for which
the kinematics have to be solved iteratively. In this way, the algorithm is capable
of treating each subsystem in the most effective manner, limiting the amount of
unnecessary computations to the absolute minimum.

1.4 Summary of the Most Important Results

As a result of the research, methods and algorithms for carrying out the following
tasks have been developed and made operative under the symbolic programming
language Mathematica (Wolfram 1988):

1. Automatic dissection of multibody systems into clusters, where each cluster
is either a single rigid body, or an assembly in which at least two joints have
to be removed in order for it to fall apart into two parts. Clusters are thus
either single bodies, single loops, or assemblies of loops for which each loop
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shares at least one body with at least one other loop. In combination with
the modules described below, this module also identifies the recursively and
non-recursively solvable parts of a system (Section 3).

2. For each cluster, automatic determination of a set of smallest independent
loops, termed also the minimal cycle basis (Section 4).

3. For each loop, detection and generation of closed-form solutions for the cases
where this is possible. (Section 5).

4. For each single loop, selection of the most appropriate closure condition and
frame of decomposition for generation of velocity and acceleration expressions
with minimal computational effort (Section 6).

5. For explicitly solvable multiple-loop clusters, determination of kinematical net-
works and an appropriate “solution flow”, i.e. equation ordering, such that the
local kinematics of each loop can be solved recursively (Section 7).

6. For non-recursively solvable subsystems, determination of appropriate cut-
set equations that minimize the computational effort during iteration, and
generation of the corresponding position, velocity and acceleration equations
(Section 8).

7. Re-assembly and reordering of all generated expressions into a global system
of equations that is suitable for processing using a conventional computer
programming language (Section 9).

8. Application of the developed methods to a non-trivial example which has
been selected in conjunction with the US TARDEC in Warren, Michigan (Sec-
tion 11).

This report covers only the theoretic foundations of the developed methods as well
as several illustrative examples showing the scope and the output of the programs.
It does not cover all the details of the implementation of the procedures in Mathe-
matica, which the authors shall be glad to deliver upon request.
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2 Basic Kinematic Relationships

For an automated processing of the kinematics or dynamics of a multibody system,
a suitable description of the system structure and parameters is required. This
description should be simple, general and it should mirror the way of thinking of
an applications engineer. In addition, the system definition statements should be
structured in such a way that they can be used directly as an input file for a symbolic
processing computer language, such as Mathematica.

In this section, some basic equations and terminology for the kinematics of serial
chains are recollected. Moreover, the basic syntax for the definition of kinematic
structures and the actual transformations between the bodies shall be discussed.
This description language will constitute the basis for the further processing of the
kinematical equations.

Kinematics are not only useful for analyzing motion, but also for generating and
solving the dynamical equations for mechanical systems of general structure. In
fact, kinematics play a key role in the quest for efficient and robust dynamical
equations. Although the generation of dynamical equations is not within the scope
of this paper, all derived methodologies, schemes and algorithms are of imminent
applicability for the dynamics. This shall be discussed in Section 2.1, where also
the basic decoupling of the two main problems of multibody modeling, namely, the
problem of determining relative and absolute motions, and the problem of generating
the system’s dynamical equations, are sifted out.

2.1 Kinematical Issues in Multibody Dynamics

The equations of motion of general multibody systems can be stated by making use
of d’Alembert’s principle, or any other suitable principle of mechanics. For example
for a scleronomic, holonomic system consisting of ng rigid bodies, d’Alembert’s
principle takes the form (see also Hiller and Kecskemethy 1989):

Z [(miagl - ff) -48; + (('DS,' w; + w; X ®Si w; —Tgi) . (5¢1] =0 (1)

1=1

where the symbols introduced above denote, for each body B;,

m; - mass,
®; - tensor of mass-inertia,

£, - resultant vector of applied forces,

Ts, - resultant vector of applied moments at center of gravity,
as = §; - vector of acceleration of center of gravity,

1
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w; - vector of angular velocity,

w; - vector of angular acceleration,

8s; - vector of virtual displacement of center of gravity,
d¢, - vector of virtual rotation.

The constraint forces do not appear in Eq. (1) as the virtual displacements ¢s; and
8¢, are assumed to be compatible with all constraints of the system. In general,
the virtual displacements ¢s; and é¢,; are not independent, so one can not use the
above equation to perform actual computations. Instead, what needs to be done is
to introduce f independent generalized coordinates ¢ = [g1,... ,q7]%, and then to
relate these generalized coordinates to the dependent ones in such a way that the
constraint equations are fulfilled exactly. This produces the position transmission
equations as

si = 8i(q,...,q1) | -
1 =1,2, ..., n5, 2
Ri - Ri(ql,...,qjt)} B ()

where R; denotes the orthogonal matrix measuring the rotation of body B; with
respect to the inertial frame. These functions are generally not known explicitly, and,
in fact, can be determined in general only iteratively from large systems of implicit
nonlinear equations. By taking the time-derivative of the positon equations, the
velocity transformations

vi=Jd,q, wi=Jwiq (3)
results, which also hold in similar way for the virtual displacements, as

§si=J,6q , 6¢;=Juw,bq. (4)

By time-differentiation of the velocity transformation equations, one obtains for the
acceleration transmission

agins.iQ-l-J.siQ, wi:JWiQ'{_jwi_(Z' (5)

Insertion of these transformations into d’Alembert’s principle yields, due to the inde-

pendency of virtual displacements 8¢z, ..., dqy, the equations of motion of minimal
order
Mi+b=Q, (6)
15




where the f x f generalized mass-matrix M, the f x 1 matrix of generalized cen-

trifugal and coriolis forces b and the f x 1 matrix of generalized applied forces @)

read, respectively,

ng

M(g) = miJs;-szi'*"Jw;r@iJWi] ) (7)
=1
ng ) .

ot = S iiend (o reres)
=1
ng

Q(g,q) = > Js;rfi+Jw;r7'i} : (9)

1

W

In these equations, the only unknown terms are the 3 x f transformation matrices
J,; and Ju; and the 3 x 1 vectors J,,; ¢ and jgi g. Thus, once these terms are
established, the problem of generating the equations of motion of minimal order is
reduced to pure algebraic operations. The difficulty for complex multibody systems
thus lies in obtaining the transformations of Eq. (3) and Eq. (5). This is the goal of
the present project.

2.2 Relative and Absolute Kinematics

The transmission equations (3), (4) and (5) involve a large number of equations,
of which some are intrinsically implicit, while the others are intrinsically recursive.
For each type of equations there exist optimized methods. Thus, it is advantageous
to discern between these two types of operations from the outset.

1 T Rz
B GLOBAL —s o
1 KINEMATICS [~ Vi» @i o mB
4= - a, Wi

Figure 1: Global Kinematics

Let the overall task of determing the motion of all bodies as functions of the inde-
pendents be accomplished by a module termed “global kinematics”, as depicted in
Fig. 1. This task involves on the one hand the determination of the relationships
between the relative motion of bodies contained in the same loop and on the other
hand the computation of the motion of the bodies as a whole in dependency of the
relative motion of the joints. Thus, the task of global kinematics can divided in two

sub-tasks, as shown in Fig. 2:

o relative kinematics, where all dependent joint variables 8 and its derivatives

_ﬁ_,é are expressed as functions of ¢, ¢, q.
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e absolute kinematics, in which, by a forward kinematics procedure, kinematical
quantities such as s;, R;, v;, w;, @;, w; are calculated for all bodies as a function

of 8,8, 8.

q— —»IB—-» — s, Ri
B RELATIVE Y ABSOLUTE | o .
g KINEMATICS | 8~ | KINEMATICS |~ % @i (= h-me
:q;——» —>—/8_—> — a’i , d—’i

Figure 2: Kinematics of multibody systems with closed loops

In the following, we first concentrate in developing efficient methods for solving the
relative kinematics for the case of general multiple-loop systems. This will be the
main concern of Sections 3 to 8. Then, in Section 9, we use these results to produce
the absolute kinematics, which then gives us the global kinematics. The further use
of the global kinematics, namely, in the setting of the generation of the dynamical
equations, shall not be covered in this project. Such investigations could be the
topic of further research projects.

2.3 Kinematics of Serial Chains

In this section, the basic formulas for computing the absolute motion of a number
of serially connected bodies is regarded. To each body we regard to be attached a
frame K;, which shall be taken as representative for that body. The position and
orientation of a reference frame K; relative to a reference frame K; can be described
by a 4 x 4 homogeneous transformation matrix ‘A; of the form

P11 Pz P13z T

. ‘R ir. P21 P22 P23 T2
1’A' — 7 =] — y 10
J [ 0 1 ] pP3t P32 P33 T3 o)
0 0 0 1

where ‘R, is the orthonormal 3 x 3 matrix of rotation transforming vector com-
ponents from K; to K; and ﬁgj is the radius vector from the origin O; of K; to
the origin O; of K;. For a sequence of two homogeneous transformations between
three reference frames K;, K; and K, (Fig. 3), the composite transformation can be
calculated by multiplying the individual transformations as

A =A; A, (11)

Velocities and accelerations can be calculated by successive combination of known
relative motions. For a chain of n elementary — i.e. revolute or prismatic — joints
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Figure 3: Sequence of transformations

G: with joint coordinates f3; and joint axes u;, one can calculate the rotational and
translational velocity of a reference system K41 at the tip of the chain relative to
the system Ky at the bottom as

Wpp1 = Z@'Bi u; (12)
1

Vny1 = Z@' B X + 0 Biwi X; = Wi X iTpyi (13)
1

where the linear velocity of K, is measured with respect to the origin of X,. Here,
o; denotes a Boolean variable with the values

S 0 if joint G; is a revolute joint "
*7 1 1 ifjoint G; is a prismatic joint (14)
while &, = 1 — o; is its complement. Rotational and translational velocity can be
combined to a twist t,, = [wn, v,]T, with which equation (13) becomes

togr = Tn1 B (15)

with the 6 x n Jacobian (Renaud 1981)

01 Uq ceh Op Uy ‘ (16)

IJ _
n+l1 — — —
01u1+01X1 Jnun+0an
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The acceleration of K, .1 with respect to Ky follows from the time-differentiation of
equation Eq. (15) as:

_{-Ln—{-] = 1Jn+l @_+ 1jn+1 ﬁ 3 (17)

where the columns of ljn+1 can be computed as

1—1 |

w, = Y 5;fujxu;, (18)
=1

X = Y oiBiuixxitauix 3 Bi(oix+oiu) (19)
=1 j=itl

2.4 Topological and Geometric Parameters

As stated in the introduction, the definition of a kinematic structure involves two
basic types of information: (1) topological or structural and (2) geometric or para-
metric information. The topological data comprises information about the number
of bodies and joints contained in the system and the interconnection pattern be-
tween these. The geometrical data determines the exact location of the axes and
points at which relative motions take place, as well as the location of the center of
gravity and the attitude of the body-fixed frame. Note that in certain cases geo-
metrical data can come very close to topological information, e. g. when a distance
or an angle between two axes become zero. :

2.4.1 Basic Topological Information

Concerning topological information the existence of loops is a very fundamental
property that plays the role of a watershed for the complexity and methodology of
the processing algorithms. If the system contains no closed chains, it is said to have a
tree-type or open structure, while if it contains at least one loop it is termed a closed-
loop system (Fig. 4). Clearly, for tree-type systems, the relative motion at the joints
are independent of one another. Thus, the task of kinematics is limited to computing
the absolute motion of the bodies as a function of the relative motions at the joints.
On the other hand, when closed loops arise, the relative motions at the joints are
not independent anymore and may involve quite complex dependencies. In this
case, in addition to the problem of determining the absolute motion of the bodies
as functions of the relative joint motions, one has to compute the aforementioned
dependencies between the joints motions beforehand. Thus, systems with closed
loops involve the two tasks defined above, namely: (1) the determination of joint-
motion dependencies, termed the relative kinematics, and (2) the determination of
absolute motion, termed absolute kinematics, while tree-type systems involve only
the second task.
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a) tree-type system b) closed-loop system

Figure 4: Comparison of tree-type and closed-loop systems

2.4.2 Basic Geometric Information

Geometric information regards the knowledge of where the characteristic points,
lines and frames through which the bodies interact with other bodies or the envi-
ronment, and with respect to which other relevant parameters, such as inertia or
extension, are measured, are placed within them. Typically, each body will have
a body-fixed frame attached to it that acts as a reference for all other quantities
measured with respect to that body. Moreover, additional reference frames can be
placed on the body when dealing with points or lines, for which a notion of the full
spatial pose is required in order to be able to define vectors and matrices. Thus,
what regards kinematics, one can think of the multibody system as a collection of
reference frames whose relative placement is either constant or time-dependent, and
which is defined through constant or variable transformations.

The distinction between topological and geometric information has a subtle point
that tends to smear the boundaries between these two notions. For example, when
the axes of three rotational joints intersect at one point, is this a geometrical or
topological property? Clearly, if the three axes are material, such as in a robot
wrist, one would tend to consider this arrangement as a special geometric case,
particularly because due to manufacturing errors it might happen that the intersec-
tion condition is not fulfilled exactly. On the other hand, if the axes are introduced
only as a means of modeling a fixed-point spatial rotation, such as in a ball-and-
socket joint of a human hip, then it would be natural to regard the three axes as
one topological unit termed a “spherical” joint. Therefore, a kinematic processing
engine must always provide a means of extracting relevant topological information
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from geometrical one, and vice versa, avoiding a rigid separation of topological and
geometrical information that might lead to undetected simplifications.

2.5 Description of System Structure

In this work, topological information is stored together with geometrical informa-
tion by introducing enough reference frames such that any place of interest and any
interaction can be modeled by a sequence of elementary transformations. The in-
terconnection between the reference frames is stated in form of a frame connectivity
matriz K, in which each element K;; describes the sequence of elementary or com-
posite transformations that brings the frame K; in coincidence with a neighboring
frame K ;. Thus, for non-neighboring reference frames the corresponding entries are
left empty and the connectivity matrix will typically be a sparse matrix.

The allowed transformations between reference frames are the elementary trans-
formations described in Table 1, as well as their concatenation. An elementary
transformation is defined as a template of the form ETransform[k , o , £ 1, where
k represents the coordinate axis about or along which the transformation takes
place, o encodes whether the transformations is a rotation (¢ = 0) or a trans-
lation (¢ = 1), and ¢ is the magnitude of the transformation. A sequcnce of
elementary transformations separated by periods (.) represents the concatenation
of the transformations. Note that any transformation can be represented as a se-
quence of elementary transformations. One particular composite transformation is
the Denavit-Hartenberg transformation (Denavit and Hartenberg 1955) that has
become very popular in robotics Table 1.

2.6 Examples

In order to illustrate the concepts described above, we introduce in the following a
number of examples, which shall be used also in the subsequent sections.

2.6.1 Planar Manipulator

The manipulator shown in Fig. 5 is a planar tree-structured system consisting of
two revolute joints and two rigid links. For the definition of system topology, five
reference frames, denoted Ky, ..., Ks, have been introduced, where Ky denotes the
basis and K, K3 and K4, Ks are two pairs of reference frames attached respectively
to the arms. Note that the introduction of two reference frames per arm is op-
tional. However, there is no computational penalty for this kind of redundant frame
definition.

The pertaining transformations between neighboring reference frames is given by
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elementary rotations ementary translations
R
0
1 0 0 0 100 s
1 0 cos® —sin® 0 10100
ETransform[1,0,0] = 0 sin® cos® 0 ETransform[1,1,s] = 0010
0 0 0 1 0001
cos® 0 sin@ 0 1000
0 1 0 9 010 s
ETransform[2,0,0] = _sin® 0 cosO 0 ETransform{2,1,s] = 0010
0 0 0 1 0001
cos® —sin@ 0 0 1000
sin® cos® 0 0 10100
ETransform[3,0,0] = 0 0 10 ETransform{3,1,s] = 001 s
0 0 01 0001
Denavit-Hartenberg Parametrisation
joint {;
joint ¢; J Gt
.y ; 01
joint (i—l _ hnk l+l
i—ll k e Y,
ink i-1 —1
% Zit1
a;
2 - T4
b
d;
Zi—1 i
Tiot

DHTransform[O,d,a,al

= ETransform[3,0,0] . ETransform([3,1,d] .
ETransform[1,0,a] . ETransform[1,1,a]

cosf —sinfcosa sinfsina acosf

_ sinf cosfcosa —cosflsine asinf
- 0 sin o cos o d
0 0 0 1

Table 1: Macros for description of basic transformations
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Figure 5: Planar manipulator with two axes

K=Table[Null,{5},{5}];

K[[1,2]] = ETransform[3,0,phi[1]];
K[[2,3]] = ETransform[1,1,1[11];
K[[3,4]] = ETransform[3,0,phi[2]];
K[[4,5]] = ETransform[1,1,1[2]];

Note that for K we are using the Mathematica convention for matrix elements in-
volving double square brackets, while for phi and 1 we use only simple brackets.
This is because the latter quantities are not regarded as matrices, but represent just
particular names of variables. Note also that it is not necessary to prescribe also
the inverse of a given transformation, as these are generated automatically by the
code

2.6.2 Wheel Suspension of a Trailer

As a second example, consider the mechanism depicted in Fig. 6, which corresponds
to a wheel suspension of a trailer. Here, eight reference frames are introduced: three
at the rod, three at the lower arm and one at each member of the shock absorber.
The pertaining transformations between neighboring reference frames are

K=Table[Null,{8},{8}];

K[[1,2]1] = ETransform[2,1,v1ly];

K[[1,3]] = ETransform[2,1,v2y].ETransform[3,1,-v2z];
K[[2,4]1] = ETransform[1,0,alphal;

K[[4,5]] = ETransform[2,1,-v3y].ETransform{3,1,v3z];
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Figure 6: Wheel suspension of a trailer

K[[3,6]1 = ETransform[1,0,betal;
K[[7,6]] = ETransform[3,1,s];

K[[5,7]] = ETransform[1,0,gamma] ;
K[[4,8]] = ETransform[2,1,-v4y];

Note that the here some composite transformations have been use for selected ele-
ments of the matrix K.

2.6.3 A Heavy-Load Manipulator

A more involved example is the heavy load manipulator illustrated in Fig. 7, which
is currently under investigation at the Department of Mechatronics of the Gerhard
Mercator University of Duisburg (Schneider and Hiller 1995). The system consists
of several booms that are connected together through joint assemblies featuring sev-
eral closed loops (Fig. 8). Each boom-joint assembly represents a joint unit whose
kinematics can be analyzed separately. The complete system consists of one “shoul-
der” joint and two additional “elbow” joints. More involved systems, such as those
used for aircraft washing applications, comprise up to five joint units.
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Figure 7: A heavy-load manipulator

For the definition of the kinematic structure, 33 reference frames are introduced,
which are numbered from 1 to 33. Between these frames, constant and variable trans-
formations are introduced. Constant transformation parameters (mostly lengths)
are denoted by v[i,j], where i denotes the index of the current joint unit and
j is a running index within that joint unit. Variable joint parameters are denoted
by betal[i,j] in the rotational case and s[i] in the translational case. The state-
ments defining the kinematical structure are reproduced below. For better clarity,
an iconic model for each joint unit is supplied in Fig. 9.

K=Table[Null,{33},{33}];

K[[1,21] = ETransform[3,1,v[1,1]];

K{[1,3]] = ETransform[3,1,v[1,2]] .ETransform[2,1,v[1,3]];
KL[3,4]1] = ETransform[1,0,betal[1,2]1];

K[[4,5]] = ETransform[3,1,s[1]];

K[[5,6]] = ETransform[1,0,betal1,3]];

K[[2,7]] = ETransform[1,0,betal1,1]];

K[[7,6]] = ETransform[3,1,v[1,4]] .ETransform{2,1,v[1,5]];
K[[7,8]] = ETransform[3,1,v[1,6]];

KL[8,9]] = ETransform[2,1,v[2,1]];

K[[8,10]] = ETransform[3,1,v[2,2]];

K[[8,1111 = ETransform[3,1,v[2,3]] .ETransform[2,1,v[2,4]];
K[[9,12]] = ETransform[1,0,betal2,2]];

K[[12,13]] = ETransform[3,1,s[2]];

K[[13,14]] = ETransform[1,0,beta[2,5]];

K[[11,15]] = ETransform[1,0,betal2,3]}];

K[[15,14]] = ETransform{3,1,v[2,5]];

K[[15,16]] = ETransform[3,1,v[2,6]].ETransform[2,1,v[2,7]];
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K[[16,17]]
K[[17,18]]
K[[18,19]]
K[[10,20]]
K[[19,20]1]
K[[20,21]]
K[[21,22]]
K[[21,23]]
K[[21,24]]
K[[22,25]]
K[[25,26]]
K[[26,27]]
K[[24,28]]
K[[28,27]]
K[[28,29]]
K[[29,30]]
K[[30,31]]
K[[31,32]]
K[[23,33]]
K[[32,33]]

\ (:) revolute joint

”‘ 51} [Zggij prismatic joint

-

~

- ~‘\\\\joint unit 1

Figure 8: Kinematic structure of the heavy-load manipulator

= ETransform[1,0,betal2,4]];
= ETransform[3,1,v[2,8]];
= ETransform[1,0,betal[2,6]];

ETransform[1,0,betal2,1]];
ETransform[2,1,v[2,9]] .ETransform[3,1,v[2,101];
ETransform[3,1,v[2,11]1];
ETransform[2,1,v[3,1]1];

ETransform[3,1,v[3,2]];

ETransform[3,1,v[3,3]] .ETransform[2,1,v[3,4]];
ETransform[1,0,betal[3,2]];
ETransform[3,1,s{3]7;

= ETransform{1,0,betal3,5]];

ETransform[1,0,betal[3,3]1];
ETransform{3,1,v[3,5]];
ETransform[3,1,v[3,6]] .ETransform[2,1,v[3,7]1];

= ETransform[1,0,beta[3,4]];

ETransform[3,1,v[3,8]];
ETransform[1,0,betal[3,6]];
ETransform[1,0,betal3,1]];
ETransform[3,1,v[3,9]] .ETransform[2,1,v[3,10]];
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Figure 9: Iconic model of the heavy-load manipulator




3 Determination of Clusters

As was mentioned in the previous section, the structure of a mechanism can have
significant impact on the complexity of the tasks involved in its processing. In par-
ticular, it is crucial to recognize closed-loop and tree-type subsystems, as this implies
whether the relative kinematics have to be established or not. The distinction be-
tween closed loop subsystems and those that form open chains can be made by
regarding the number of joints that have to be removed in order for the remaining
subsystem to fall apart in two parts. If removal of a single joint induces a decompo-
sition of the system in two parts, then this joint is part of a tree type substructure.
Otherwise the joint is part of a closed-loop subsystem, which shall be termed a
“cluster” in the sequel. Tree-type subsystems and clusters can be automatically
detected by application of some concepts of graph theory, as described next.

By a (linear) graph G = (K, E) one understands a set of nodes K = {Ky,...,K.}
and a set of directed edges E = {€;, j,,- -, €injm },» Where each edge e;, ;, connects
“two nodes K;, and K,,, starting at K;, and ending at K;,. The frame connectivity
matrix can be easily mapped into a directed graph. Hereby, the reference frames
are regarded as nodes and the transformations between them as directed edges.
That is, if a transformation from a reference frame K; to a reference frame K; is
given, then in the associated graph one has two nodes K; and K; corresponding to
the two reference frames and an edge e;; directed from K; to K; representing the

transformation.

For example, the graph associated with the heavy-load manipulator has the struc-
ture depicted in Fig. 10. Note that in this graph the edges are oriented in accordance
with the direction of the user-defined transformations.

A well-known method for detecting the clusters of a graph is to search for the
so-called bridges, which are edges e,; for which, after removing one of them, the
corresponding end nodes K; and K; are not connected anymore (Carré 1979). An
algorithm that is particularly suitable for performing this consists in calculating
the so-called “closure” of the adjacency matrix of the graph. In this setting, the
aforementioned clusters are termed “leaves”.

The algorithm starts with the so-called adjacency matrix A of the graph G, the
coefficients of which are defined as

L {eij}ai<j if eijeE or ejiEE
i = { 0 if eij,ei¢ ' (20)

Hereby, the special element “ 07 is defined to have the following properties when
used in the set-theoretic operations of union (“U”) and intersection (“N ")

{61']‘, €kly - - } No=0nN {e,-j,ekl,.

} = {eij,ekl,...} ,
{eij,ekg,...}UOZOU{Gij,ekl,...}:0 . (21>
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Figure 10: Interconnecting graph for the heavy-load manipulator

Note that the zero element, “07, is different from the empty set, . In fact, it plays
the role of the complement of §, i.e., it behaves as the set of all nodes. Starting from
the adjacency matrix, a recursive algorithm is applied that generates as coefficients
of the resulting matrices sets of edges {eij, ex,...} by taking particular unions and
intersections of the coefficients of previous matrices and the zero element defined
above. The recursive algorithm corresponds to a simplified Jordan elimination and

reads

B® =4 | (22)
w | BY ifi=horj=k )

‘Bi' = 3 :1,27...,7?’ 23
! BY I (BEVUBETY) ifij £k

where n denotes the number of nodes of K. The final matrix, B™ | obtained in the
step k = n represents the so-called closure matrix A* = B™ | of the initial matrix
A . The closure matrix A* has the following properties.

(1) If an element of Aj; of the resulting matrix A™ is equal to the zero element
introduced above, or equal to the empty set, the corresponding nodes K; and
K; are part of the same leaf.

(2) If an element A} is equal to a non-empty set of edges, these edges represent
the bridges that have to be traversed in order to travel from node K; to node

K;.
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Figure 11: Example of a graph containing two leaves and one bridge

Thus, the coefficients of the closure matrix A* yield directly the information needed
to detect the clusters in a multibody system.

As a simple example, regard the graph displayed in Fig. 11. Its representation as a
set of nodes and edges 1s

G= <{,C17}C2>’C3alc4,lcsalc6} ) {612,613,623,83&645,646, 656}) .

By immediate inspection, one can recognize that the graph contains two leaves, one
leaf consisting of nodes {Kj, K2, K3} and the other consisting of nodes {K4, Ks, Ke },
and that the bridge connecting these two leaves is ezs.

The algorithm described above recognizes these leaves by processing the correspond-

ing adjacency matrix

i 0 {612} {613} 0 0 0
{612} 0 {623} 0 0 0
A= {e13} {eaa} 0 0 0 {36}
0 0 0 0 {645} {646}
0 0 0 {645} 0 {656}
0 0 {ess} {eas} fese} O |

Form this matrix, one obtains by application of the algorithm described above the

sequence of matrices

[ 0 {612} {613} 0 0 0 i
{enz} 0N ({erz} U{ens}) = {eizt  {} 0 0 0
s _ | tes) {es} N ({ers} U{enn}) = {} {es} O 0 {ess}
0 Oﬂ(OU{elz}) = 0 0 0 {645} {646} !
0 0 O {845} 0 {656}
. 0 0 {ess} {ess} {ese} 0 |
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[ {enn} {enn} {} 0 0 0

{er2} {e12} {} 0 0 0

B(z) - {} {} {} 0 0 {636}

0 O O 0 {645} {646} ’

0 0 0 {ess} 0 {ess}
0 0 {ess} {esws} {ese} O

{} {} {} 0 0 {636} ]
0 4 o0 0 {ess}
B® — {} {} {} 0 0 {ess}
0 0 O O {645} {646} !
0 0 0 {845} 0 {656}
[ {ess} {eas} {ess} {ess} {ese} {ess} ]

O { 0 0 {ess} ]
0 { 0 0 {ess}
B — {} {} {} 0 0 {ess}

0 0 0 0 {ess} {ess} ’
0 0 0 {ews) {ess} {}
| {ess} {ess) {eas} {eas} {} { |

{} {} {} 0 0 {ess) ]
{} {} {} 0 0 {ess}
BO) — {} {} {} 0 0 {ess}
0 0 0 {ess}) {ess} {}
0 0 0 fes) {est {3
L {ess} {eas} {ess} {} {} { |

Finally, after n = 6 steps the closure matrix

0 O A} Aess} {ess) {ess} ]
Ll EEE
A=BO= | ) ) fed O 0 O
{ess} {ess) {ess} {} {} {}
L {ess} {636} {ess} {} {} {}

is calculated. Clearly, according to the criteria stated above, nodes K1, K2, K5 and
K4,Ks,Ke belong, respectively, to different leaves, which are separated by the

“bridge” €36

Note that for the wheel suspension of (Section 2.6.2) no decomposition into simply
connected subsystems is possible, because the complete system forms one single
cluster. However, for the heavy manipulator described in Section 2.6.3, three leaves
separated by the two bridges ers and eq 21 respectively, can be detected.
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4 Detection of Independent Kinematical Loops

After applying the dissection algorithm described above, the system is divided into
a set of clusters whose relative kinematics are independent of one another. For each
cluster, there are two possibilities: (1) it consists of a single loop, or (2) it consists
of several interconnected loops.

In the case that the cluster comprises only a single loop, the methods derived in
Section 77 can be applied directly.

In the case that the cluster consists of several interconnected loops, one needs to
take into account the local kinematics at each loop and the relationships between
them. Obviously, the single loop plays a key role in the generation and solution of
the relative kinematics. As will be seen later, it is possible to build the complete
kinematics of a multi-loop system by assembling the local kinematics of the indi-
vidual loops in what is termed a “kinematical network”. Thus, the recognition and
processing of an appropriate set of loops is crucial for the design of a correspond-
ing algorithm. Below we describe a method for automatically recognizing a set of
suitable independent loops, which is based on graph-theoretic concepts.

4.1 Fundamentals of Cycle Bases

According to a well-known theorem, for a multiple-loop system whose associated
graph contains ny nodes and ng edges there are np, = ng—ng +1 independent loops
(Gondran and Minoux 1984). While the number of independent loops is unique, this
is not the case for the set of loops itself, as there are infinitely many ways of choosing
a suitable set of ny loops where no loop results as a combination of the other loops.
It is obvious that, depending on the choice of loops, the kinematics may be more or
less simple to solve. Thus, it is important to determine a set of loops which simplifies
the resolution of the kinematics.

A heuristic criterion for defining a suitable set of loops is that the loops should be as
“small” as possible, where small refers to the number of joint coordinates contained
in the joints of loop. As will be shown in Section 7, the sum of degrees of freedom over
all loops minus the number of coupling conditions between the loops is an invariant
of the system which represents its number of degrees of freedom. Thus, if a small
loop is replaced by a larger loop, the number of coupling conditions between this
loop and the others must increase, and the overall resolution of equations becomes
more complicated. Therefore as rule of thumb, smaller loops imply less coupling
and thus simpler equations.

The determination of the smallest set of loops corresponds to the problem of finding
the minimal cycle basis of a graph. This problem is well-known in graph theory, and
there have been several methods derived for its solution. Concerning terminology,
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there is a subtle difference between the notion of a loop in multibody dynamics and
that of a cycle in graph theory. By a multibody loop we understand a serial chain
of bodies in which each body is connected to exactly two other bodies. In contrast
to this, a cycle is a set of edges and nodes such that each node is connected to an
even number of edges. Thus, a cycle can form an “eight”, embrace more than one
multibody loop, etc. We will exclude these “paradoxical” cases for simplicity and
regard only cycles that correspond to single multibody loops. Such cycles are also
termed “elementary” cycles in the pertaining literature.

For the operation with cycles, one can define a corresponding algebra as follows.
The sum of two cycles C' and D is defined as their symmetric difference C'+ D =
(C U D) — (C N D). The resulting cycle comprises the union of the edges and
nodes of both cycles, minus the common edges and the nodes that are incident to
two common edges. The set of cycles in a graph is closed under the operation of
addition. A set of cycles is termed independent if no cycle in this set results from
the addition of other cycles in this set. A set of cycles is a basis if any cycle which
is not an element of this set can be generated by the sum of some of the cycles in
this set.

4.2 Methods for Determination of Cycle Bases

A special kind of cycle basis is the fundamental cycle set. In a fundamental cycle set,
it is possible to find one edge for each cycle such that removal of all of these edges
leads to a connected tree, and re-insertion of each of these edges closes exactly
one cycle, which is the one to which the edge is associated (Horton 1987). The
remaining graph is termed the spanning tree of the graph, and the set of removed
edges is denoted the cotree (Andrews and Kesavan 1975). Clearly, a cycle basis in
which there exists one cycle whose every edge is also part of some other cycle can
not be a fundamental cycle basis, because removal of any of the edges of the internal
cycle will also open the surrounding cycles. Thus, fundamental cycle sets are special
cases of cycle bases, and the set of smallest cycles also termed the minimal cycle
basis may yield smaller cycles then a corresponding fundamental cycle set.

While polynomial-time algorithms for the determination of minimal cycle bases exist
(Hubicka and Syslo 1975, Horton 1987), the problem of determining a fundamental
set of minimal cycles is solvable only by trying all possibilities of cycle-forming and
comparing them. In the present modeling, it is not required that the multibody
loops form a fundamental cycle set. Thus it is possible to use the minimal cycle-
basis algorithms for determining a suitable set of loops. Below we state an algorithm
that solves this problem in an efficient manner.
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4.3 Proposed Algorithm for Finding a Minimal Cycle Basis

The present algorithm for determining a minimal cycle basis is a modification of the
algorithm described in Horton 1987. Its flow diagram is shown in Fig. 13. We start
with the interconnection graph G, in which each existing edge is complemented
by a corresponding edge in opposite direction. The hereby resulting set of edges is
termed £. The target is to extract from this representation a set of minimal cycles
¢; which will be collected in a set C' = {¢,...,cn, }. During the process of finding
this set of cycles, some bookkeeping needs to be done concerning the shortest paths
detected so far. This information is stored in a “shortest-path matrix”, P, in which
each element p;; describes the shortest known path between two nodes X; and Kj,
stored as a set of edges.

A node and an edge will be marked as “visited” when they are touched by the algo-
rithm; a node will be marked as “finished” when all edges with which it is incident
are marked as “visited”. At the beginning of the algorithm, all nodes and edges are
marked as “unvisited” and “unfinished”. The node that is going to constitute the
root of the graph is marked as “visited”. Furthermore, the shortest-path matrix P

is initialized as follows:

[ e} if ek
Fij = { 0 if else ' (24)
Finally, the container for the minimal cycle set is initialized as the empty set C' = {}.

The algorithm consists in the repeated application of the following two steps, each
application of a step or of a substep hereof being termed a “stage”:

1. Take a node that is marked as “visited” and “unfinished” as the actual node
Ki. Then, for each edge ex; to a node K; which is not visited, mark edges
er; and ;i as well as node K; as visited, and apply the four steps described
below. Afterwards, mark the actual node as “finished”.

2. The following four steps will be applied for each e;; and K; described above:

2.1. Create paths p,,; from each visited node X,,,m # j,k to K;, and vice
versa, by appending the edge ex; to the path from K, to K; as

Pmj = Pmi U {e;} (25)
and accordingly for the path pjn,.

2.2. Check whether an edge ¢,,; already existed. If this is not the case go back
to step 1. Otherwise, the edge ey; closes a cycle with edges

Crn = Pmk U {ekj7 ejm} (26)
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2.3.

2.4.

This cycle can now be appended to the current set of independent cycles
C ={c,...,¢n-1}, as it is independent of all other cycles cy,...,cat
determined so far. The independency follows from the fact that it is the
only one containing the edge e;,,. Moreover it is minimal in the visited
part of the graph because it is calculated with the shortest path pp.
After generating this cycle, mark the edges e;m and e,; as visited.

Check whether the shortest paths in the visited part of the graph can be
shortened by including the edges €, or en; defined above. This is the
most elaborate part of the algorithm, and consists of taking each pair of
visited nodes K, and K, and comparing, as shown in Fig. 12, the lengths
of the existing path between K, and K, with that from K, over
K. and K; to K, and that of the path from K, over K; and Ky, to
K,. From these, the shortest path is retained.

Figure 12: Extraction of shortest paths

Actualize the set of minimal cycles according to the newly established
shortest paths. Hereby, the actual cycle ¢, is compared which the result
of adding it to one of the previously established cycles ¢;, 7 < n. If the
cycle resulting from ¢, + ¢; is smaller than the cycle c,, than the latter
is replaced by the former.

The described algorithm is displayed as a flow diagram in Fig. 13. It must be
emphasized that the present method is only approximative, i.e., it does not guar-
antee to detect always the minimal cycle basis. However, we have compared the
algorithm with existing ones and found that it represents a good compromise be-
tween efficiency and accuracy. For example, the computational effort of the present
approach is n%, while for the exact approach described in Horton 1987 it is ni.
Moreover, we have found that our algorithm renders in general better results than
the approximative method described in the same paper, but with almost no addi-
tional computational effort. Moreover, the algorithm is easily adapted to the case
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mark all nodes and edges as unvisited
take a node kand mark it as visited

take new
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mark j, e and ejkas visited
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m# Kk 7

take new
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I calculate Pmj and Pjm l
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actualize C
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unvisited
nodes ?
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all nodes

Figure 13: Flow diagram for computation of a minimal basis
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of weighted edges, in which one associates which each edge a positive number which
describes its “length”. These lengths can be taken into account when determing the
shortest paths, making the algorithm also suitable for ﬁndmg loops for which the
sum of weights is minimal.

4.4 Example

In order to illustrate the procedure described above, we apply it to the simple exam-
ple reproduced in Fig. 14. The graph consists of five nodes and eight edges, which
have been weighted by the numbers displayed next to the edges. The node acting as
the root is Ky, which is the only one marked “visited” at the start of the procedure.
At the outset, the path matrix P is given as:

ICl ,Cz ’Cs K:4 ICS

0 {612} {613} {614} 0 K4

{ear} 0 {ess} {eas} O Ko

P = {ea1} {es2} O 0 {ess} Ks
{ea} {e} 0 0 {ess} K4

0 0 {ess} {esa} O Ks

Figure 14: Example for detection of minimal cycle basis

Fig. 15 shows the visited part of the graph, the computed loops, and the new entries
of matrix P at the end of each stage. A more detailed reference of the computed
shortest paths and smallest cycles is given in Table 2. Stage 1 of the algorithm
starts at node K, detecting the edge e; to the unvisited node Ky and marking Ko,
1o and ey as visited. As no other visited nodes besides Ky and K, exist at this
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point, the algorithm proceeds with the next unvisited edge, which is e;3. During
step 2.1 the shortest path from the visited node Ky to K3 is calculated as py3 =
ea1 + e1s, without considering edge es3. The path ps; is calculated simultanously.
The edge ey3 is recognized in step 2.2, leading to the detection of the first cycle of
the cycle basis, which becomes ¢; = py1 U {e13, €32} = {ea1, €13, €32}. The third step
at this stage comprises checking if any existing path can be minimized by taking
into consideration the new edge ey3. For example, for the path ps3, one has three
alternatives:

P%) = {6217613,632}

Pg? = {Pzz, 62371733} = {623}
(3) _

D2z = {P23>632,632}

While the length of pg? is one, the length of p%) is 4 and the length of pg%) 18
9. Thus the shortest connection between K, and K3 is indeed via the newly added
edge ey3, so the corresponding entries in the path-matrix P are changed accordingly.
Similarly, for the path between K; and Ky one has

1
sz) = {612}
szz) - {612, 623,632}

P§22) = {613, 632’P22} = {613, 632}

Here, the lengths of p%),pﬁ? and pg) are 3, 5 and 2, respectively. Therefore, one
must replace the old shortest path pglz) by pﬁ";). The shortest path between the other
possible combinations of visited nodes can be calculated in the same way.

Next, the node K, is taken as the second unvisited node, while still retaining X4
as the first node. At this stage, the cycle c; = {ea1, €14, €42} is detected by similar
reasonings as those leading to the first cycle. Before adding this cycle to the cycle
basis, the algorithm checks whether ¢ = ¢ + ¢1 = {ei3, €3, €24, €41} 1s smaller than
c1 (step 4). Hereby, ¢; has the length 5, while ¢} has the length 4. Thus the cycle ¢;
is replaced by the cycle ¢}, and the current cycle basis, at stage 3 of the algorithm,
becomes C' = {cf, ¢, }.

At the beginning of stage 4, no more unvisited nodes remain that are connected to
K, through an edge. Thus, step 1 of the algorithm is now repeated, taking as next
node Ks. From this node, the algorithm detects K5 as an unvisited node which is
connected to Ks. During this stage, K5 is appended to the visited part of the tree
and the cycle basis becomes C = {c}, ¢2, ¢3}. After this step all edges and nodes are
visited and the algorithm ends.
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Stage 1: Ki K2 Kz Ki Ks
0 {ei2} {ews} {e1s} O K1
K {ea1} 0  {ezs {eaa} O Ko

P = {es} {esny O 0 {ess} Ks
{ear} {ea} 0 0 {ess} K4

0 0 {653} {654} 0 ’Cs
c=)
K1
Ky Ks Ks Ks Ks
0 {eis, €32} {e13} {e1a} O K1
{eas, ear} 0 {eas} {eas} O K
P=1 {em} {esz} 0 0 {ess} | Ks
{ea}  {eaz} 0 0 {ess} K4
0 0 {ess} {esa} O Ks
C={c}
K1 Ka K3 K4 Ks
0 {e13,e32} {e13} {e14} 0
{ess, ea1} 0 {eas} {e2s} 0
P = {es1} {eaz} 0 {es1,e14} {ess}
{ear {ess} {ea1,er13} 0 {ess}
0 0 {653} {654} O
C = {c],c2}
\
K1 Ko K3 K4 Ks
0 {e13,e32} {eis} {e1a} {e13,ess}
{eas, ea1} 0 {eas} {e2a} {e23,ess}
P = {es1} {ess} 0 {es1,e1a} {ess}
{ear} {eas} {ea1,e13} 0 {eas}
{es3,e31} {esa es2} {es3} {esq} 0

C= {C;,CQ,C:;}

Figure 15: Processing steps for the minimal-cycle-basis example
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l stage | step | Ky I K; | chord ]

shortest paths

| cycle basis

0 P12 = {e12} P2 = {ea} C={}
Pz = {613} Pa1 = {631}
P1a = {614} Pa = {641}
P23z = {623} P32z = {632}
Paa = {624} Pay = {642}
Pas = {ess} P53 = {ess}
Pas = {645} Psa = {6’54}

same as in stage 0

p2s = {€21, €13} Pa2 = {ea1, €12}
all others same as in stage 1

¢y = {621,613,632}

C={c}

Pas = {e3} Pz = {esa}
P12 = {e13,€32} par = {eas, €1}
all others same as in stage 1

Poa = {621,614} Pa2 = {641,612}
P3g = {631,614} Paz = {641,613}
all others same as in stage 2

2 €24 ¢ = {e21, €14, €42}
3 P24 = {621,614} Paz = {641,612}
P3q = {631,614} P43z = {641,613}
all others same as in stage 2
4 c] = {613,632,

€24, 641}

C= {CTv 62}

Pis = {613,6’35} Ps1 = {6537631}
Pas = {6237‘335} Ps2 = {6533632}
Pas = {64176137635}
Prq = {353>€31,€14}

all others same as in stage 3

2 €45 C3 = {641,613,}
613,635,654}
3 Pis = {6137635} P51 = {653,631}
Pas = {623’6’35} P52 = {653,632}
P45 = {645} Psa = {654}
all others same as in stage 3
4 = {632,624,

645,653}

*k

Cy = {621)6137635a
654,641}

C = {c],c2, ¢}

Table 2: Generated paths

and loops for the minimal-cycle-basis example
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5 Position Analysis of a Single Loop

In the previous two sections it was shown how a general mechanism can be decom-
posed in a set of clusters, and these, if applicable, in a set of independent loops. The
next two sections describe how to produce the associated kinematical equations by
regarding first the kinematics of the single loop and then re-assembling these local
kinematics to the governing equations for each cluster. The amalgamation of the
global kinematics for the set of all clusters is covered in Section 9.

This section discusses a method for the automated detection and generation of
explicit solutions for correspondingly solvable single kinematical loops. Such cases,
although not general, occur very often in practical applications, while the general
case implies the solution of a polynomial of degree sixteen and thus cannot be solved
in closed form.

We regard the kinematical loop as a sequence of homogeneous transformations
A;, i =1,...,n, between reference frames K,_; and K;, respectively. The
closure of the loop is implied by assuming that the first and last reference frames
coincide, i.e., K, = Ko (Fig. 16, Fig. 17). Moreover, we assume that a set of joint
variables is contained in the transformations, some of which are independent, and
some of which are dependent. Mathematically, the closure condition is formulated

as
A]Ag An:I4 (27)

Excluding the case of over-constrained mechanisms, the closure condition thus in-
volves twelve non-trivial equations, of which, due to the orthogonality of the ro-
tation part R of the matrix A, only six are independent. These six independent
equations can be viewed as implicit equations defining six scalar variables, usu-
ally joint coordinates fi,..., 0, as a function of the other variables contained in
the transformations. The aim of the closed-form solution approach is to derive six
scalar equations

fi(Br) = 0
fa (52351) : 0 (28)

fG(ﬂﬁ;ﬁ\S)"')ﬁl) : 0

with functions f; containing exactly one unknown more than its preceding equations
and being mostly of order two in the corresponding unknown variable 3; (or tan %—‘
in the case of a revolute joint). Additionally, the functions f; should be as simple
as possible in order to minimize computational effort.
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Figure 16: A single kinematical loop

K1
/cn};/ \< A }/'

\\ A2 AA AB
Ko} >/ %
\_/ IC]
A
1 A[—l
Figure 17: Basic structure of a Figure 18: Grouping of transfor-
loop mations

One way of achieving this is to state all possible alternative forms of the closure

condition
_ a1 -1 A1 -1
Ai]+1 T Alk - A‘LJ e All Aln o Aik+1 (29)
where 1 < j <k<mn and 7y,..., 14, isa cyclic permutation of 1,...,n, and

extract from the resulting set of 12n? equations the ones which are most simple.
However, because the number of terms in some of the coefficients of the resulting
matrix can grow up to 9(n=1) "such an approach would not be feasible already for

modestly sized loops involving e.g. 10 transformations.

An alternative approach is to group the transformations into four particular se-
quences Ay, A;r, Ay and Ap, where A4 and Ap are characterized by the fact
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that they are the longest possible sequences of transformations leaving one of the
geometric elements point, line, plane or direction invariant (Fig. 18). Let £, and
{y denote two such invariant geometric elements. Then, any measurement taken
between these two elements will not depend on the transformation sequences Ay
and Ap or the unknown variables contained therein, which are thus eliminated. To
see this, let the closure condition be restated as

Ap Ajp Ay =A7Y (30)

and let the measurement be represented as a projection operator (éB €4 A)
(Fig. 19) where A is the homogeneous transformation describing the motion of the
reference system holding ¢, with respect to the reference system holding £, . Then,
after applying the prOJectlon operator to both sides of equation (30), one obtams
the scalar equation

W(§B’§A;AII):W(§3,§A§A;1) (31)

which does not depend on the unknowns contained in A4 and Agp. Currently,
five such basic measurements are being used: (I) the quadratic distance between
two points gpp, (II) the distance of a point to a plane ggp, (III) the cosine of
the angle between two planes (or orientations) ggg, (IV) the distance (along the
common perpendicular) between two lines gz and (V) the quadratic distance of
a point to a line grp, see e.g. Hiller and Kecskemethy 1989 (Fig. 20).

5.1 Projection Operators

In order to carry out these measurements using homogeneous transformations, two
reference frames K (fixed) and K’ (moved) are introduced, such that the points,
lines or planes mentioned above correspond either to the origin o, a coordinate axis
L; or a coordinate plane II;, of these frames. Denoting by A the homogeneous
matrix relating coordinates of K’ to coordinates of K, where

A:[Rﬁ} (32)

the measurements mentioned above are carried out by the following operations
grp(A) = ||Trans[A]|"
T
= & Ao (=r(4)),

(33)
(34)
= LAL (=p5(h) (35)
(36)
(37)

gep(A; € 34

gee(A; &€,

)
i)

arn(A; e“e;) = € [Rot[A]g;-xTrans[A]] , 36
€i)

gip(A; &) = | Trans[A]|? - (& A &) 37
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e

€3

A/ )
_.:;ng) = W(§L’§R’A)

Ko 2 o > R
e

1o

Figure 19: Projection of a spatial transformation to a scalar number

a) gpp : Point - Point b) ggp : Plane - Point

(l'_g—zi)2 léi'(!_'j"zi)

¢) ggr : Plane - Plane d) grr : Line - Line

Figure 20: Projection operations
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Here, the symbols marked with a stacked “H” denote homogeneous vectors, which
can be either points, when the fourth component is 1, or directions, when the fourth
component is zero. In particular, one has for the three directions parallel to the
coordinate axes and the origin of the coordinate system, respectively,

1 0 0 0
gl““‘ 8 ’ 22: (1) ) —2-3: (1] ) 5: 8 (38)
0 0 0 1
Moreover, the following shortcut has been introduced:
Rot[A]=R , Trans[A]=r. (39)

Note that for the projections ggp or grp the corresponding plane or line is chosen
from the (fixed) frame K. This is consistent with the property that premultiplication
of homogeneous matrices is only meaningful for orientation vectors. In order to re-
solve the projection for an unknown joint coordinate , the matrix A is decomposed
as follows

A=AeAE(g,,;ﬁ)AT=[}§"’ zleHRE(éoy;ﬂ) zE(zi;ﬂ)] [B;,, El} o)

where £ is now contained in the elementary transformation matrix Ag(e, ; #) only.
The latter has the structure

Rule,; 8) = Is+7(sinfg, + (1 —cosp) &) =Is+5T(e,; H) (41)
rp(e,; B) = oe B (42)
where o is again a Boolean variable indicating the type of the joint (¢ = 0 for

revolute joint, ¢ = 1 for prismatic joint) and the tilde denotes the operation of
generating an anti-symmetric matrix from an euclidean vector as

0 —U3 (%)
v = U3 0 -1
— V2 (%} 0

After carrying out all multiplications, the following structure is obtained for pro-
jection types gpp, ggP, 9EE, gLL

_ [ Acos® 4+ Bsin®@ +C for 0=0 (8=06)
g(...)(A(ﬂ)) - { A2+ Bs+C for o=1 (B=5s) ) (43)
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while projection type grp gives

A* cos’0® + B* cosO sin® + A cos® + Bsin for o =
gLP(A(ﬂ)):{A32+Bj+C ' * ®+OforZ:(1) (44)
The projections gpp , gp , JEE , 9L can be used for easy resolution both for angular
and translational unknowns, while the projection ¢grp yields simple results only in
the case of a translational unknown. Also, for translational unknowns, the projection
type gpr gives always vanishing coeflicients A, B, ', while the projections ggp and
grr, yield vanishing coefficient A . For computation of explicit solutions the three
projections gpp , ggp , ggE are the most important ones, because equation (44) can
be solved explicitly only for translational unknowns and projection grr only occurs
in combination with transformation sequences AA and AB which include less then
five of the six possible unknowns (Woernle 1988).

Projections ggp and ggg have an interesting property when the unknown is an
angular variable © . If the transformation A, in equation (40) is the identity, one
can repeat the projection operation after exchanging the original left vector g; with
e, X ¢;, where e, X ¢; is the axis of action of the elementary transformation and

v # 1. Then, this second projection yields a function g((z))((a) which is related to
the original projection, g((l))(@) , by

g{l))(G)) =  Acos® + Bsin® + C() } . (15)

6?(©) = —Bcos® + Asin® + O

From this set of equations, the angle © can be determined uniquely in the range
(—m,n] while for equation (43) two solutions can be found:

; tan‘l(é) + tan™? Az—étz—Bz —1 for 0=0 (f=0) (46)

v B2 —
-—2%34—:1:———3—#4—0— for c=1 (f=s)

5.2 Possible Structures of the Constraint Equations

From the discussions above, it is clear that in any multibody loop one can always
find two geometric elements, éA and éB, of the type point, line or plane, for which
there exist corresponding transformation sequences A4 and Ap that leave these
geometric elements invariant. Moreover, for each pair of geometric elements there
is an associated projection operator which, when applied to both sides of Eq. (30),
produces a scalar equation in which the effect of the transformation sequences Ay
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and AB, and in particular the unknowns contained therein, can be eliminated. Thus,
if for a given loop one can find two particular geometric elements ¢, and ¢, and

associated transformation sequences AA and AB, such that the latter contain five
unknowns, the remaining scalar equation will depend only on the remaining one
unknown, and thus will be solvable in closed form. Furthermore, after resolving
such an equation, all further unknowns can be established in closed form. Thus,
these cases give rise to what we term “explicitly solvable loops”.

If the transformation sequences A4 and Ap contain less than five unknowns, the
closure of the loop will be representable as a polynomial of degree four to sixteen
(Raghavan and Roth 1993). Such cases are most efficiently solved by iterative algo-
rithms (see Section 8), and are thus not treated in this setting.

After finding a first closure condition that can be resolved for one unknown, the
remaining unknowns can be determined by repeating the search of invariant geomet-
ric elements until no unknowns remain. In this way, an iterative algorithm results
that can be applied repeatedly to the loop until explicitly resolvable equations are
produced for all unknowns. By a slight modification of the algorithm, it is possible
also to cover some overconstrained mechanisms which are not paradozical in the
sense defined in Angleles 1988. Hereby, one considers the following five cases

Ap A A A = I4 (Closure Type 0) (47)
Ay = I, (Closure Type 1) (48)

ApAy, = 14 (Closure Type 2) (49)

ArAg A Ay = 14 (Closure Type 3) (50)
ArAs = I, (Closure Type 4) (51)

The closure equation of Type 0 corresponds to the case where two transformation
sequences are found that leave, respectively, one geometric elements invariant, as
described above. A closure equation of Type 1, if it arises, means that the whole
sequence of transformations in the loop leaves some geometric element £ , invariant.
Thus, any projection carried out with this element yields a scalar equation in which
all transformations are eliminated, i. e., that is identically fulfilled. As there are three
independent projections which can be carried out with one geometric element, this
closure condition produces three identically fulfilled independent constraint equa-
tions, reducing the number of relevant constraint equations by three. For example,
in the case of a planar four-bar mechanism, all transformations share as invariant el-
ement the plane perpendicular to the rotation axes, which produces three identically
fulfilled constraint equations. Thus, for the planar mechanism only three non-trivial
constraint equations remain for the unknowns in the loop. A similar effect is repre-
sented by the closure condition of Type 2. Here, the chain is decomposed into two
sequences of transformations that leave, respectively, the geometric element ¢, and
éB invariant. Then, the associated projection operator produces a scalar equation
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which is independent of all unknowns of the loop, and is thus fulfilled identically.
Such a situation arises for example in the case of a Cardan shaft, where the six
rotational joints can be grouped into two sets of three intersecting axes, with the
intersection points corresponding to the respective invariant geometric elements.
Note that, for the last two types of closure conditions, the sequences Ay or Ag
may be bordered with additional transformations containing no unknowns, without
changing the basic results. Such bordering transformations have been intentionally
left out for better clarity.

The closure conditions of Type 3 and Type 4 do not occur in the initial stage of
the analysis of the loop. Instead, they appear in the subsequent stages in which,
by repetition of the searching algonthm the remaining unknowns contained in the
sequences Ag and A, are determined. This repeated application of the algorlthm
is as follows: after having produced the projection pertaining to {, and ¢,

invariance property associated with £, is removed from the elements of Ag together
with the current resolved unknown. Then a new closure condition is searched for by
applying the same criteria as above. Eventually, no more invariant properties remain
besides those in A 4, but there is still an unknown in the remaining transformations.
This is the situation in the closure condition of Type 3, where Ap contains the
remaining unknown in a form similar to equation (40). Then, a projection as defined
in equation (31) is carried out, but this time { ; is taken as a geometric element which
actually is transformed by Ag, thus yielding a scalar equation which contains this
unknown. In the case that Ap is a rotation, there are two geometric elements that are
transformed, namely, the coordinate planes parallel to the rotational axis. By taking
these as projection elements, a pair of uniquely solvable equations is obtained. For
the case of a prismatic joint, the geometric elements which are not invariant are the
origin of the reference frame and the plane normal to the joint axis. After performing
this step, the invariance properties of £ are removed, and the process described
above is repeated. Eventually, one only one unknown remains, while all invariant
properties have been eliminated. Then, a closure condition of Type 4 arises, where
A 4 contains the remaining unknown. After projecting as stated in Eq. (31), with
¢, and £, taken as geometrical elements which are actually transformed by Ay, a
unique solution as in the case of the closure condition of Type 3 is obtained.

5.3 Implementation of the Algorithm

Below we describe an implementation of the concepts described above. As geometric
elements, the origin o and the three planes IIy, Il,, II3 normal to the coordinate axes
z,y, z, respectively, and passing through the origin are regarded. The generalisation
of the implementation so that lines are also considered is straight-forward and shall
not be discussed here. For the practical implementation of the algorithm, a special
matrix is constructed which is denominated the invariance properties matriz IPM.
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In this matrix, each transformation A; in the chain is assigned a column with
elements [0, ,om,,0m,,0,) | that are equal to one if the corresponding geometric
element is invariant under the transformation A; and zero otherwise. Sequences that
leave a geometric element invariant can be recognized as sets of adjacent elements
exhibiting a pattern of contiguous ones in the same row. After marking columns
containing unknowns, sequences AA and AB can be recognized as the two non-
overlapping sets of contiguous ones which contain the maximum number of marked
columns. A4 is determined first, whereby at this stage the first and last columns
of IPM can be regarded as nelghbours, as the order of transformations can be
cyclically interchanged. Then, Ap is determined from the matrix IPM’ resulting
from IPM after removing the columns corresponding to Ay,

Determine IPM

Determine A 4

no

found 7
yes
Determine IPM
ng (IPM)
0 >0
Break 1 ng (IPM')
Type 4 Type 1 Elimination Stage 11

! il
!

Clear invariance

properties of A4

End

Figure 21: Flow diagram for stage I of single-loop processing algorithm

Fig. 21 and Fig. 22 show the flow diagram of the algorithm. One can clearly see the
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simple branching conditions which lead to the different closure conditions Type 0
through Type 4 discussed above. In this flow diagrams, the symbol ng(A) stands
for the number of unknowns remaining after performing the i-th projection. Also,
all stages of the equation generation can be processed by the same piece of code,
which encompasses only about 1600 lines of Mathematica code. The implementa-
tion is organized in four stages: (1) processing of direct kinematics, (2) generation of
invariance properties matrices, (3) evaluation of projections, and (4) control of equa-
tion selection. An advantage of the code is the simple input format for a mechanism,
which can be defined using the well-established Denavit-Hartenberg parametrisa-
tion. This is shown below for some examples.

IPM/

Determine AB

no
found ?

yes

0 ns (A1) > 1

ng (Arr

Type 2 Type 0 Break Type 3

I

Clear invariance
properties of Ap

|
!

continue

Figure 22: Flow diagram for stage II of single-loop processing algorithm
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5.4 Examples

As a first example, consider the elbow manipulator depicted in Fig. 23, which is
also treated in Hunt 1986. The Denavit-Hartenberg parameters of the robot are as
given in the table of Fig. 23.

C) | d ] a | a I
@1 0 —71'/2 0
®, | 0 0 7
@3 0 0 g
@4 0 7!'/2 h
@5 0 —71'/2 0
0 0 Os 0

Figure 23: An elbow manipulator and its Denavit-Hartenberg parameters

The input for the program consists of a list containing a transformation sequence
and a list of unknowns in the form {transformation.transformation...,{vars}}.

In{1]:= ElbowManipulator =

-Pi
{DHTransform[thetal, 0, ---, 0] . DHTransform[theta2, 0, 0, f]
2 Pi
> DHTransform[theta3, 0, 0, g] . DHTransform[theta4, 0, --, hl
-Pi 2
> DHTransform[theta5, 0, —---, 0] . DHTransform[0, O, theta6, 0]
2
> Inverse[ATransform[{{nL, n[1, 21, nlt, 3]}, {nM, nl2, 21, n[2, 31},
> {nN, n[3, 2], n[3, 31}}, {x05, y05, 2z05}]1],
> {thetal, theta2, theta3, theta4, theta5, thetaé}};

In[2]:= SimplifyChain[%]
Qut[2]= ETransform[3, O, thetal] . ETransform[2, 0, theta2]

> ETransform[i, 1, £f] . ETransform[2, O, theta3] . ETransform{1, 1, gl
> ETransform[2, O, theta4] . ETransform[1, %, h]

-Pi
> ETransform[3, 0, theta5] . ETransform[i, 0, --- + theta6]

2
> Inverse[ATransform[{{nL, nl[1, 21, n[1, 31}, {nM, nl[2, 21, n[2, 31},
> {nN, n[3, 21, n[3, 31}}, {x05, yo5, z05}1]
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For the example at hand, the transformations are defined either as (1) Denavit-
Hartenberg expressions DHTransform|theta,d,alpha,a], in which the parameters cor-
respond to the ones in the expression defined in Table 1, (2) as a general transforma-
tion ATransform[.. ] consisting of a rotation matrix defined in row-wise format and
the radius vector, or (3) as elementary transformations ETransform(k,o, 5]. The
unknowns comprise the variables thetal, . ..,theta6. Note that the closure of the
chain is defined as the inverse of the prescribed motion of the end-effector. Out[2]
shows the reduction of the user-supplied chain of transformations to the normal
form comprising only general and elementary transformations. Clearly, there are
ten such transformations, which shall be denoted by Aq, ..., Ayq.

Next, the invariance properties matriz is generated and further processed. The
initial values of the elements of this matrix are

Al AZ AB A4 A5 AG A'? A8 A9 AlO

1 11,
L1111 11
IPM = 2 (52)
1 1 1 11 ,
111 1 1 L1 o

0; O, O3 04 O; O

where the zeros have been omitted for better clarity. For example, column 4 states
that the fourth transformation, which is a rotation about the y-axis, leaves the
plane normal to the y-axis and the origin of the local reference frame invariant.
The further values of the elements during the different steps of the algorithm are
displayed in Fig. 24. With the invariance properties matrix IPM displayed above,
the sequence A4 can be easily detected in row 2, where it comprises columns 2-
7 of adjacent ones, and covers three ‘marked’ columns with unknowns 03, 03, Q4.
Similarly, Ap is detected in row 4 by the two adjacent ones in columns 8 and 9,
with unknowns ©s and ©g. Thus the optimized closure condition is:

AB A][ AA
—N— N
AgAg A10A1 A2A3A4A5A6A7 = I4 .

Note that here the columns 1 and 10 are viewed as contiguous, as in first step of
the algorithm all transformations can be cyclically permuted.

After applying the general projection operator with £, = Il; and {; = o, the
transformations contained in AA and AB are eliminated and a scalar equation is
obtained in which the only remaining unknown is ©y. After this, the invariance
properties of Ap are temporarily removed, i.e. the ones in row 4, columns 8-9, of
matrix IPM are ignored.
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The next set of transformations featuring invariance properties and containing un-
knowns is detected in column 9, row 1, stating that the plane normal to the z-axis
of the local reference frame is invariant with respect to transformations by Og .
Applying the projection with the elements II, and II; thus generates a scalar
equation for the remaining unknown ©; . After removing the corresponding in-
variance properties from IPM , no further invariance properties remain besides
those contained in A4 . However, one unknown, namely O, still remains in col-
umn 9. Thus, the situation of closure Type 4 arises, and one has to carry out
the projections with the non-invariant elements of Ag, which are II, and II3.
In this way, a pair of constraint equations as described in Eq. (45) is obtained.
After this step, neither unknowns nor invariance properties remain in IPM , so
the invariance properties of A4 are removed by cancelling the ones in row 2,
columns 2-7. Then, the whole process is started over again, but now without al-
lowing for cyclic permutations. The resolvable unknowns, decompositions and geo-
metric elements resulting from these steps, as well as the ones described above, are

A1 AB A]I AA
AN AN
05 : As Ag A A1 Ay AsAsAsAgAr =14 §A:H2,§B:H1
A[ KB A][ AA
e Yot Y anthren
®6 : Ag Ag A10A1A2A3A4A5A6A7:I4 ) éA:H2,§B3H2 and H3
A, A A Al
et Yot Yatay
0, : A7A8A9A10A1A2(®2)$A4 As As =1, §A:Q ,éB:Q
N e’
A, A A
A, As A A,
AN AN AN
@3 : A7A8A9A10A1A2A3 A4 A5 AG :I4 N §-A:Q 7§—B:H1 and H3
A] KA
N
(")4 : A7A8A9A10A1A2A3A4A5 Ae :I4 ) §A:§B:H1 and H3

Knowing that the projected equation has either the structure of Eq. (43) or Eq. (45),
the code just needs to generate the coefficients A,B,C in the first case and
A, B,C1. C® in the second case. This is done through constructs termed Ez-
plicit Solution Forms , printed as ESF[, ©;, A, B, C] or ESF|o, 0, A,B,CcM, CA),
which specify the coefficients of the scalar equation, the unknown, as well as the
type of the unknown, which is angular for ¢ = 0 and translational for o = 1. The
explicit scalar equations produced by the code are:

In[3]:= GenerateConstraints[ElbowManipulator]
out[3]= {ESF[0, -thetal, yO5, x05, 0], ESF[0, -thetab, 0, -1, -ADH1[1, 2]],

-Pi
> ESF[0, --- + theta6, ADH1[2, 2], -ADH1[3, 2], -Cos[-thetabl, 0],
2
> ESF[0, -theta2, -2 f ADH3[1, 4], -2 £ ADH4[3, 4],
2 2 2 2 2
> f - g + ADH3[1, 4] + ADH3[2, 4] + ADH4[3, 4] 1,
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‘
[

> ESF[0, theta3, 2 f g, O,
2 2 2 2 2
f + g - ADH4[1, 4] - ADH4[2, 4] - ADH4[3, 4] ],
> ESF[0, theta2 + theta3 + theta4, O, 1, -ADH3[1, 3], -ADH4[3, 3]]}

In[4]:= GetSubstitutions[%]
out[4]= {aDH1[i, 2] -> nM Cos[thetal] - nL Sinf[thetai],

> ADH1[2, 2] -> -(Sin[thetal] n[i, 2]) + Cos[thetall] nl[2, 21,

> ADH1[3, 2] -> -(Sin[thetai] n[1, 3]) + Cos[thetal] n[2, 31,

> ADH3[1, 3] -> ADH4[1, 3] Cos[thetall + ADH4[2, 3] Sin[thetall,

> ADH3[1, 4] -> ADH4[1, 4] Cos[thetal]l + ADH4[2, 4] Sin[thetall,

> ADH3[2, 4] -> ADH4[2, 4] Cos[thetal] - ADH4[1, 4] Sinl[thetall],

> ADH4[1, 4] -> x05 + nL ADH6[1, 4] + ADH5[2, 4] n[1, 2] +
ADH5[3, 4] nf1, 3],

> ADH4[2, 4] -> yO5 + nM ADH6[1, 4] + ADH5[2, 4] n[2, 2] +
ADHS[3, 41 n[2, 3],

> ADH4[3, 3] -> -(Cos[theta6] n[3, 2]) + Sin[theta6] n[3, 31,

> ADH4[3, 4] -> z05 + nN ADH6[1, 4] + ADH5[2, 4] n[3, 2] +
ADH5([3, 4] n(3, 31,

> ADH4[1, 3] -> -(Cos[theta6] n[1, 2]) + Sin[theta6] nl1, 3],

> ADH4[2, 3] -> -(Cos[thetaé] n[2, 2]) + Sin[theta6] n[2, 3],

> ADH5[2, 4] -> ADH6[2, 4] Sin[thetat],

> ADH5[3, 4] -> ADH6[2, 4] Cos[thetaé],

> ADH6[1, 4] -> -(h Cos[thetab]),

> ADH6[2, 4] -> h Sin[theta5]}

Out [4] shows the substitutions introduced automatically to reduce computational
overhead. These terms are shortcuts for lengthy expressions and are denoted by
ADHK[%,51, as they are typically elements of 4 X 4 homogenous transformation ma-
trices. Hereby, ¢ and j denote the row and column indices of the matrix elements,
while k is a running index for an intermediate matrix. It must be noted that the
resulting expressions for ©3 and ©4 have been obtained using slight modifications
of the procedure described above, which take into account parallel axes. The results
coincide almost completely with those reported in Hunt 1986.

An example of an over-constrained mechanism for which explicit solutions can be
generated is the trailer wheel suspension described in section 2.6.2. The system is
planar, all rotational axes being parallel to the global z-axis. Supposing that the
length s of the shock absorber is taken as independent coordinate, and that the
three angles «, 3 and v are taken as the unknowns, the program detects that Il
is invariant under all transformations, and thus generates three trivial equations
containing the spurious ‘variable’ Null. These trivial equations printed together
with the relevant solutions for the remaining three dependent joint coordinates
make the six scalar equations for the loop, which become

ESF[1, Null, 0, 0, 0],
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ESF[1, Null, 0, 0, 0],

ESF[1, -Null, 0, 1, 0],

ESF[0, beta, -2 s v2z, -2 s ADH1[2, 4],

> ADH2[1, 1] + ADH3[1, 1] - ADHS[1, 1117,

ESF[0, alpha, -v3y, -v3z, -ADH6[2, 4], -ADH7[3, 411,
ESF[0, -gamma, 1, O, -ADH10[2, 2], -ADHi0[3, 21]

The explicit values of the expressions for the shortcuts are obtained by issuing the
command SolvePositionEquations[%], yielding

ADH1[2, 4] -> -viy + v2y
2
ADH3[1, 1] -> s
2 2
ADH5[1, 1] -> v3y + v3z
2 2
ADH2[1, 1] -> v2z + ADHi[2, 4]
2 2 2
4 s (v2z + ADH1[2, 4] )
beta —> -ArcTan[Sqrt[-1 + —-~----- e e e e 11 +

(apH2[1, 1] + ADH3{1, 1] - ADH5[1, 1])
> ArcTan[-2 s v2z, -2 s ADH1[2, 41]
ADH8[2, 4] -> s Sin[beta]
ADH8[3, 4] -> -(s Cos[betal)
ADH6[2, 4] -> -viy + v2y + ADH8[2, 4]
ADH7[3, 4] -> -v2z + ADH8[3, 4]
-(v3y ADH6[2, 4]) + v3z ADHT[3, 4]
alpha -> ArcTan[ ——— ,
2 2
v3y + v3z
v3z ADH6[2, 4] + v3y ADH7([3, 4]
> =( memmmmmen -]
2 2
v3y + v3z
ADH10[2, 2] -> Cos[alpha] Cos[betal + Sin[alphal Sin[betal
ADH10[3, 2] -> Cos[beta] Sin[alphal - Cos[alphal Sinl[betal
gamma —> ArcTan[ADH10[2, 2], -ADH10[3, 2]]

Note that 8 is computed by solving an equation of type (43) for which two solutions
can be found. The above solution fo 3 is thus just one possible solution . A second
solution for the variable would be

2 2 2
4 s (v2z + ADH1[2, 4] )

beta -> +ArcTan[Sqrt[-1 + ———-———==---- - -- -11 +
2

(ADH2[1, 1] + ADH3[1, 1] - ADH5[1, 11)
> ArcTan[-2 s v2z, -2 s ADHi[2, 4]]

In general, the user can select between these two possibilities.
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6 Generation of Velocity and Acceleration Ex-
pressions

This section states particulars of the computation of velocity and acceleration ex-
pressions for each joint coordinate of a single loop. While the problem of establishing
velocity and acceleration relationships in multibody systems poses no fundamental
difficulties, the question of finding the most efficient one is still an open issue. There-
fore known methods for velocity transformations were compared and the most effi-
cient ones were chosen for subsequent implementation in the automatic processing
code. Hereby, the following two basic procedures were considered:

(a) Differentiation of position equations with respect to time (direct differentiation

method).

(b) Formulation of the closure equations at velocity level and resolution of un-
knowns by linear algebra methods or by geometric projections (velocity closure
approach)

In the following, these two methodologies are discussed and compared in more detail
for the case of a spatial four-bar mechanism.

6.1 Description and Comparison of Methods for Generation
of Velocity Equations

Direct differentiation of the relative position equations with respect to time rep-
resents the most straight-forward method of obtaining velocity and acceleration
expressions: as the position equations are known after applying the procedures de-
scribed above, an analytic differentiation is readily carried out with built-in func-
tions of Mathematica. Moreover, as the equations produced by the position resolu-
tion code come in cascade form, the resulting equations for velocity and acceleration
exhibit a triangular structure and are thus very easy to resolve. As a consequence,
one would expect that this method renders not only a simple, but also a very ef-
ficient approach to velocity and acceleration analysis. However, it turns out that,
what concerns efficiency, this method ranked last in a comparison to other methods
described below.

A second method for obtaining velocity expressions is the velocity closure approach.
Here, one divides the loop in two branches, or paths, P; and Pp; and compares
the velocities at the tips, or some selected components of these. Both paths have
the same base frame K; and the same tip frame Kj; and contain together all
transformations defined within the loop. The twist, i.e., the six-dimensional vector
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comprising angular and linear velocity of the tip frame with respect to the base

frame, can be computed in terms of the joint rates [f]p, and [8]p,, of the branches

Pr and branch Py, respectively. From the equality of the corresponding expressions,
one obtains the system of six linear equations

[ Tile, [Blp, = [Iilp,, (Bles, - (53)

Here, [le]'pl and [ljk]p” represent the Jacobians of the branches Py and Pi;,
respectively, mapping the corresponding joint rates to the velocity twist of the tip
frame.

The system of equations (53) can be readily resolved for any set of six joint rates
provided that the resulting matrix of coefficients is non-singular. However, in order
to minimize the number of operations, one is interested in finding a representation
that implies the largest possible number of vanishing coefficients in ['J4]p, and
[‘Jt]p,,. Such patterns of vanishing coefficients are determined by one or more of
the following choices:

1) the tip frame employed as end point of the branches,

(1)
(2) the base frame employed as start point of the branches,

(3) the frame in which angular and linear velocity vectors are decomposed, and
(4) the representative point at which the linear velocity of the tip frame is mea-

sured.

The effect of these parameters on the structure of the Jacobians is very difficult to
foresee, so one has to proceeded largely on a heuristic basis.

QOur basic heuristic rule for making an appropriate selection of velocity measurement
frames is based on the structure of the loop decomposition effected during the
position analysis. Hereby, taking the frame at the end of A, as the common tip of
the two branches Py and Pj; will guarantee that at least three rows of the Jacobian
vanish identically for the columns of the variables contained in A4 . Moreover,
locating the base frame of the two branches at the start of the transformation
sequence Ap will also have positive effect on the filling of the Jacobian. The
validity of these rules was confirmed by a number of examples.

The issue of selection of a frame of decomposition and of a representative point
for linear velocity was solved by implementing two of what was found to be the
most efficient methods for Jacobian calculation (Kecskeméthy 1993a, Krupp 1992):
a tip-frame oriented method (Orin and Schrader 1983) and a base-frame oriented
approach (Waldron 1981). The first one decomposes all vectors with respect to the
tip frame, and takes also its origin as representative point for the linear velocity. In
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Pr

Figure 25: Decomposition of a single loop for velocity analysis

the base-frame oriented method, the velocity vectors are decomposed in the base
frame, and the linear velocity of the tip is expressed in terins of the point momentar-
ily coinciding with the origin of the base frame. The present implementation of these
two methods was integrated in the general code, featuring again automatic map-
ping of common subexpressions to intermediate variables to minimize the number

of operations.

The effect of appropriate velocity equation generation is illustrated by the following
example.

6.1.1 Velocity Analysis of a Spatial Four-Bar Mechanism

The spatial four-bar mechanism depicted in Fig. 26 consists of two revolute joints,
one universal joint and one spherical joint. Each joint implements one or more rota-
tions about axes represented by unit vectors u; and measured by joint coordinates
B; , respectively. The joint coordinate f; is regarded as input of the loop, while
the coordinates B, ..., 0 are viewed as dependent ones. The loop decomposition
addressed in Fig. 25 consists here in selecting the spherical joint, which comprises
three rotations leaving the point of intersection of the corresponding axes invariant,
as A, and the universal joint, which comprises two rotations leaving the point
of intersection of the corresponding axes invariant, as Ap . Thus, the remaining
transformations are produced by the coupler as Ay, and the input lever, the joint
with axis u; , the base, the joint with axis u, , and the output lever, as A7,

The two branches for velocity closure formulation are now chosen to be those start-
ing at the fork of the universal joint and ending at the ball of the ball-and-socket
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Figure 26: A spatial four-bar mechanism

joint. By taking the tip-oriented Jacobian formulation, the closure condition

[BJA]PI [/Bl’ 62 ]T = [BJA]'P” {637 /643 BE}» BG) B7]T . (54)

is obtained, where

i Uy AM2
[BJA]'PI = Alh X (Al‘{" Af_) AQ2 X AZ: ?
] B 22 (55)
B [ Al&a A_@zg Aﬂs AQS AQ7
[ JA]PII = A% X Ad Ag4 X Ad 0 0 0
L ) N ~ Y
ﬁB ﬂ‘l /85 166 137
60
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Here, K4 denotes the frame at the ball of the spherical joint, while quantities to
which the left superscript 4 has been added represent vectors decomposed with
respect to frame K4 . Notice that, in Eq. (55), the three lower rows of the columns
corresponding to fs, fs and B7 vanish. This is because the representative point for
the linear velocity is invariant with respect to the corresponding rotations. Further
decomposition of the involved vectors leads to the following representations of the

Jacobians
A ] rA A A .
Uy 1 U3y Ugqy U5 4 0 1
Auly 0 AU3y Au4y Au5y cos 37 0
A A A A :
[BJA]P — U1, 0 [BJA]'P — U3, Uq, Us, SN ﬂ7 0 (56)
I A’ilx 0 ) 11 A/‘JSx Al€4x 0 0 0 .
AK1y -—T A/$3y Alﬂ)4y 0 0 0
L Anlz 0 d L A’{:3z AK’42 0 0 0 J

Here, the symbols “4k;, , ¢ € {1,...,6} and v € {z,y,z}, denote shortcuts for
the components of the vector products arising in Eq. (55). Here, the conditions
Ay, = e, and “r = re, have been worked in.

With the expressions derived above, the following three methods for determining
velocity dependencies are basically possible:

1. [Direct Differentiation Method]. Direct differentiation of equations (28) with
respect to time. This procedure needs no calculation of Jacobians.

2. [Projection Method]. After calculating the Jacobians using the method de-
scribed in Orin and Schrader 1983 and Waldron 1981, the closure equations
can be established in the form (54). Then, the following steps are effected:

— Projection of the last three rows of the Jacobian, which represent the
translational velocity, along vector d. This leads to the following equation

[BlAﬁl X (Al + Aﬁ) + ﬁzAuz x Ar] - (Al +Ar — Aﬁ) =
[Bstus x Ad+ Batuy x Ad)-4d (57)
0

where the unknown joint velocities B3 and ﬂ4 are eliminated. The
resulting scalar equation can be solved for S, .

— Simultanously resolution of two of the last three equations for 85 and

Bs .

— Simultanously resolution of the second and the third equation for 35 and

Be.
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~ Resolution of the first equation for Brg.

. [Coefficient Analysis Method]. By taking into consideration all vanishing en-

tries in Eq. (56), one can first solve rows 4 and 6 for ﬁg and By : then row
5 for B, ; then rows 2 and 3 for Bs and fs; and finally row 1 for 8. Note
that here only 2 x 2 subsystems of linear equations need to be solved, and
that there is no need for projection operations. Also, note that the sequence
of resolution is reversed for the first three unknowns compared to the previous
method. However, it should be emphasized that this special resolution scheme
resulting from the special geometry of the loop can not be generalized for
arbitrary loop geometries.

The comparison of the three methods yielded the total operation count shown in
Table 3, with all elementary operations (addition, subtraction, multiplication and
division) counted equally. Trigonometric operations were not taken into account, as
they are already computed in the position analysis.

Method Number of Operations Improvement

1 297 reference
2 183 38.4
3 139 53.2

Table 3: Comparison of computational efficiency for different velocity analysis meth-
ods

Clearly, the coefficient analysis method yields the best results for this example,
although this method is the most difficult to automatize. However, the table shows
that the projection method is only slightly less efficient than the previous method,
making it a good candidate for automatic velocity analysis. While this result can
not be generalised to all single loops it was decided to implement both methods
and then choose the best on a loop-by-loop basis. This will be explained in detail in
section 6.2. Note, finally, that the “straight-forward” method of direct differentiation
yields the worst results, though it is very easy to implement.

6.2 Implementation of Velocity Processing Procedures

The previous example shows that the direct consideration of the pattern of zeroes in
the Jacobian and the projection method yield the most efficient results. Therefore,
both methods were implemented in the current version of the symbolic kinematics
processing program. Below we reproduce some heuristic rules for selecting the most
appropriate method based on a more detailed analysis of the structure of Jacobians.
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6.2.1 General Structure of Jacobians

As was mentioned earlier, there are several possibilities of evaluating the columns of
the Jacobian, two of the most efficient ones being the methods of Waldron 1981 (base
frame oriented) and Orin and Schrader 1983 (tip frame oriented). These methods
will be described below for a serial chain of n+1 bodies and n revolute or prismatic
joints attached to an inertial base.

Let there be a reference system K;,i = 1,...,n attached to each joint G; before
the transformation, where the joint axis u; is collinear with one of the axes of K,.
An additional reference system K,y is attached at the tip of the chain after the
corresponding joint transformation. The Jacobian can be decomposed either with
respect to the tip frame K,4; or with respect the base frame K.

In the first case, the Jacobian results as

J(n+1 1J- i 01 n+lﬂl e 5'n n+1ﬂn (58)
1= _ B
n+1 n+ o1 n+l@l + 71 n—+—lxl o n+lun + 5, n+ X_n )
where "1y, = "ty x "+Lp .1 The involved vectors are computed by the following
recursive algorithm (Orm and Schrader 1983):
n+1 Rn+1 = T
n+lRi_1 = "R; i_lR? R t=n+1,n,...,2
mHly, = "Ry, i=1,2,...,n
n+1 (59)
n+1lntr T 0
mtly = nt + "R, r. , i=n+1Ln 2
i—1 Ln+41 - zn—{—l 1111 ) s Ty e vvy
1 _ nt1 -
mt Xi = ™t U; X ilny1 1—1,2,...,71
In the second case, the Jacobian is obtained as
71ty e G 'u
J — U B n Yp ., (60
o orluy + 01X, o Onlun+ORX, | )

T
with 'x. = 'u; x jry. Here the involved vectors are computed using the following
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recursive algorithm (Waldron 1981):

lRl = ] )

'R = R, 1R, , t=2,3,...,n

12{ = IR Zﬂi , v = 1,2, N

}ﬁl =0 (61)
Iy, = I+ 'Rl , i=12,...,n

1& = —ly;xiry , t=12,...,n

6.2.2 Basic Cases Leading to Simplification of Velocity Expressions

Optimized expressions for the dependent joint velocities and accelerations are of
particular advantage when the subchains A, and Ap described above comprise to-
gether five unknowns. These cases occur when the geometric elements left invariant
by A4 and Ag are either a point or a plane. There are four possible combinations
for relating these two elements to the chains A, and Ag. For all four cases, if the
tip frame of A is used for decomposition of the resulting vectors, and if its origin
is used for describing its translational velocity, there will always exist a 3 x 3 sub-
matrix of the Jacobian that vanishes. The only difference between these four cases
lies in the ensuing pattern of vanishing coefficients, which is discussed next.

A, and Ap both leave a point invariant

In this case, the transformation sequences AA and AB correspond to a spherical
joint and a universal joint, respectively. This case was illustrated by the example
of a spatial four-bar mechanism. If the Jacobian contains enough zero elements to
allow a partitioned resolution with blocks not larger than 2 x 2, the decomposition
of the coefficient analysis method is employed, otherwise the projection method is

used.

Invariant element of AA is a point; invariant element of AB is a plane

Here, the transformation A4 represents again a spherical joint, while the transfor-
mation Ap corresponds to a planar joint. The velocity of the origin of the tip frame
of A4 does again not depend on the three joint rates of the spherical joint, so these
are eliminated from the three translational velocity equations. The systems can be
handled basically in the same way as described in section 6.2.2. However, instead
of projecting the translational velocity along the distance vector between A4 and
Ag , one carries out this projection now along the normal to the plane invariant to

the transformation AB
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Invariant element of A, is a plane; invariant element of A is a point
For this case, only the coefficient analysis method is efficient. This is illustrated
by the example of spatial mechanism with a planar joint shown in Fig. 27. The
mechanism consists of two rotational joints, one universal joint and one planar
joint. The planar joint is replaced by a combination of three parallel rotational joints
with joint axis us, and joint variables s, 05 and fB7. Of the seven joint variables, the
angle B, is regarded as input of the loop, while the variables 8, ..., 8, are viewed
as dependent. The joints are denoted below by the index of the corresponding joint
variables.

universal joint

——— base

v

(

planar joint

Figure 27: A spatial mechanism with a planar joint

The loop dissection introduced above amounts to selecting the planar joint, whose
three variable rotations leave the plane perpendicular to the axis uy invariant, as
subchain A4, and the universal joint, whose two variable rotations leave the point
of intersection of axes us and w, invariant, as subchain Ag . Then, the link 3 acts
as the subchain Ajs, and the rest of the transformations, i.e., link 2, the joint with
axis u;, link 1, and the base link, embody together the subchain ATl
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The two branches for the velocity closure condition comprise now the two chains
starting at the reference system Kp at the left end of link 2, with one of its axes
aligned with the us-axis of the universal joint, to the frame K4 centered at the
origin of joint 7 and connected to the base link. One of these, Py, traverses the
chain comprising the universal joint, the link 3 and the planar joint, while the other

“one, P, comprises links 2 and 1, joints 2 and 1, and the base link. The closure
equation for velocities thus reads

[BJA]'PI [ﬂl 3 BZ]T = [BJA]PU [B?n 547 ESa BG 5 B7]T ) (62)
with
[ Ay Auz
PIalp, = | Ay, x 41 A, x (Pa+2D |
-5/—/
B 2 (63)
I Aﬂs AyA Aus Aug Aug
BT alpr = | Auy x (Md+ A7) Aug x (Ad+2F) Aug x A f Auy x Ae o}
i o . = N e N
By Pa Bs Bs B

All vectors are decomposed in frame K 4, whose z-axis is aligned with the normal to
the plane of the planar joint, us. This choice is arbitrary, but it can nevertheless be
assumed that the normal to the plane will be parallel to one of the coordinate axes
of K 4, because otherwise the transformation at the joint 7 would not be elementary.
Now, the angular velocity vectors of joints 5, 6, and 7 all have a nonzero entry only
in the z-component, which is equal to the joint rate, so the corresponding block
of the two upper rows of the Jacobian vanish. Similarly, one can appreciate that
joints 5, 6, and 7 do not produce a velocity component in z-direction, yielding three
zero entries in the last row of the Jacobian. Thus, again a 3 x 3 submatrix of the
Jacobian has vanishing coefficients. Furthermore, as the reference point for K4 lies
on the axis of joint 7, the last three entries of the last column of the Jacobian also
vanish. Finally, as the axis of joint 4 always remains perpendicular to the z-axis of
K 4, the z-component of the translational velocity induced by joint 4 is also zero.
Thus, the Jacobians for the present example takes the form

[ Ay, Aug, ] [ Aus, Aug, O 0 0
july iuzy jugy ’:u4y (1) (1) (1)
Badle = | as a0 | BTl = | 4 a4 4 . (64)
Kig Ri1g K3z K4y K5y Koy 0
Alily A/ﬁy Ali',gy Ahﬁ4y AK5y Ali(;y 0
L Afilz AK’lz J L A/fsz 0 0 0 0]

With the given pattern of zero coefficients of the Jacobians, the best resolution
scheme is to solve rows 1, 2 and 6 for the unknowns Ba, B, By, then rows 4 and 5

for [f5 and ﬂs and finally row 3 for ﬁ7.
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Both A, and Ag leave a plane invariant
This case corresponds previous one, and can be treated correspondingly.

6.3 Generation of Acceleration Expressions

From the velocity closure conditions, one can readily derive the acceleration closure
conditions by direct time-differentiation as

[ Tde, Bles + [ Tele, Ble, = [ T4lps, Bles + [ Teles, [Bles - (65)

Note that [ Ji]p, [ﬁ]pl and ['Ji]p,, [é]p” can be calculated from vector products
as described in equations (18) and (19). Thus, no analytical differentiations are
necessary at this point.

After determining ['J]p, [_B_]pI and ['Ji]p,, [ﬁ]p”, the unknown accelerations can
be determined using the same resolution scheme as for the velocities. Thus one can
restrict attention to the treatment of the velocity equations (53), and apply the
resulting techniques subsequently to the acceleration problem.

6.4 Example: Wheel Suspension of a Trailer

For the trailer wheel suspension the following sequence of equations is generated for
the unknown joint velocities

ADH14[2, 4] -> v3y Cos[gamma] - v3z Sin[gamma]
ADH14[3, 4] —-> -(v3z Cos[gamma]) - v3y Sin[gammal]

ADH14[2, 4]
ADH14([3, 4] alpha’

gamma’ -> -—alpha’ + beta’
Similarly for the accelerations one obtains

JACR6[6] -> -(s beta’)

JACR8[5] -> -(ADH14[2, 4] alpha’)

JACR8[6] -> -(ADH14[3, 4] alpha’)

JACRO[5] -> -(ADH14[2, 4] alpha’) - ADH14[2, 4] gamma’
JACRO[6] -> -(ADH14[3, 4] alpha’) - ADH14[3, 4] gamma’
JACR10[5] -> -(JACR9[5] alpha’) - JACR8[5] gamma’
JACR10[6] -> —(JACR9[6] alpha’) - JACR8[6] gamma’
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JACR7[6] ~> -(JACR6[6] beta’)
-JACR10[6] + JACRT[6] + s

alpha’’ -> - -
ADH14[2, 4]
-JACR10[5] + ADH14[3, 4] alpha’’
beta’’ -> -
s
gamma’’ ~> -alpha’’ + beta’’

The shortcuts JACRE [i] represent intermediate terms arising in the evaluation of the
velocity and acceleration expressions, and can be interpreted to be the ¢th element
of a column, or its first time-derivative, of a Jacobian. Note that the velocity and
acceleration expressions make use of the intermediate expressions generated in the
previous steps.
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7 Generation and Solution of Kinematical Net-
works

After decomposing a general multiloop system in its constituents, i.e., in a set of
independent loops, and generating the local kinematical equations for the individ-
ual loops, the next step is to re-assemble the local kinematical equations into a
global set of equations. A method of accomplishing this is the method of kinemati-
cal transformers introduced by the author in Kecskeméthy 1993b. The basic idea of
this method is to regard each loop as a nonlinear transmission element that maps
the values of the independent joint variables ¢ to the values of the corresponding
dependent variables (%% . In this way, the local geometry of the loop can be ne-
glected when it is being assembled into the global system and all that needs to
be regarded are the number of independent variables, termed the local degree of
freedom f7, of the loop, and the number of dependent variables, termed its outputs.
Note that in the general case the number of dependent variables is six, while for
the case of planar or spherical mechanisms the number of outputs is three. The so
constructed element is denominated a kinematical transformer. With the model of
the kinematical transformer, the task of generating the global kinematical equations
for a multiloop system consists in recognizing in which way the inputs and outputs
of the individual kinematical transformers are concatenated. As it will be seen, this
concatenation is achieved by linear equations. Thus the assembly of the individual
kinematical transformers into the global system can be reproduced by a network of
linearly coupled nonlinear transmission elements, which we term a kinematical net-
work. From this network, it is rather simple to gather further information about the
system, as for example the solution flow, 1.e., the propagation of the motion of the
global inputs through the mechanism, or, if applicable, the recursive solution flow,
which is the order in which the loops can be processed such as to obtain a recursive
solution. Below we reproduce a short overview of the method for easier reference.
Results of the corresponding Mathematica implementation shall be presented in
Section 11.

7.1 Determination of Loop-Coupling Conditions

The joint variables within a loop are denoted by fi, ..., Bny) when it is not
clear which of the coordinates to use as inputs and which to use as outputs. It
is clear that by modeling each loop independently of the others a redundant set of
joint coordinates is introduced and that a dependency between the joint coordinates
defined in the different loops will result. This dependency can be formulated quite
simply if one regards only elementary joints (i.e. prismatic (P), revolute (R) or
screw (H) joints) as joints where a coupling can occur. This pre-assumption is not
very severe because, as it is known, all technical joints can be decomposed into a

69




fr Inputs : fc — 6 OQutputs
g_’ g’ﬁ éema ﬁ ’ é

Figure 28: Model of the general kinematical transformer

sequence of elementary joints. However, it will be allowed that multiple joints G
connecting np(G) > 2 bodies B; occur (Fig. 29).

H3

Figure 29: A joint connecting several bodies

Now, assume that the joint is part of ny(G) independent loops L;. Let p; denote
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o o |

the position of body B; in the natural coordinate system of the joint with respect
to a given reference point, and (i a relative joint coordinate defined in loop Ly
describing the relative position of bodies Bix) and Bjy). Each loop connected
to the joint introduces a linear equation defining a relative joint coordinate as the
difference of the relative position of two of the bodies connected by the joint:

k) — iy = Be+ox , k=1,...,n(G9) . (66)

After collecting all of these equations, and supplementing them with a equation for
the definition of the reference point within the joint, e.g.

H1 = 0, (67)

one obtains a system of nr(G)+ 1 linear equations

Pu=f+a (68)
with
i 0 0
p= : , B= @ , &= o (69)
Hns(o) By (Joint) Qny (Joint)

defining p as linear function of ﬂ Note that P isa (np(G)+1) X npg) matrix,
where, in general (np(G)+1) # np(g). Thus, in order for Eq. (68) to have a solution,

it must be ensured that the vector [f—{—a lies in the range of matrix P. This condition
can be expressed with the help of the orthogonal complement B of P (Halmos
1987), defined as

BTP =0 . (70)

It follows

BY(f+4&)=0 . (71)

IQ>

The number of independent columns of matrix B and thus the number of linear
equations which the joint coordinates [3 must fulfil is equal to np(Joint)+1 —1r,

where r is the rank of P . This rank is equal to npg(g) minus the increase of the
number of connected components resulting from the original system when the joint
is removed. Thus, for a 2-connected graph, i.e. one in which at least two joints have
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to be removed in order for the mechanism to fall into two parts (which is the normal
case in mechanism analysis), the rank of P is np) and the number of coupling
conditions at a joint can be determined by the formula:

p(Gi) =nr(G:) —npey +1 . (72)

It is interesting to note that matrix P , after removing the first line, can be inter-
preted as the incidence matrix of a graph whose nodes represent the coordinates
pi and the edges the variables f; directed from pjy to pi) . Then, matrix BT
defined by Eq. (70) corresponds just to the cycle matrix of this graph. Thus one can
obtain the coupling conditions using the same algorithms as described in Section 4.
Note also that from this property it follows directly that the elements of matrix B
are only +1, —1, 0, so that the coupling conditions are just signed sums of joint
variables.

It can be shown that the counting rule (72) yields enough coupling conditions be-
tween the independently modeled loops so as to allow to assemble them correctly
to general systems (Kecskeméthy 1993a). Indeed, the following identity holds:

F=3fu - Y06 | (73)

where [ is the global degree of freedom of the mechanism, fr; is the local degree
of freedom of loop L;, and ng denotes the number of joints, including multiple
joints. Thus, dissecting a general multibody system into individual loops and then
formulating the coupling conditions at the joints yields a system of equations which
is equivalent to the traditional methods of multibody kinematic analysis. Eq. (72)
plays a role similar to the Gribler-Kutzbach formula of spatial kinematics.

The conditions of linear coupling derived for elementary joints can be extended
to other joints as well, but these joints must fulfil two conditions: (1) it must be
ensured that the result of two joint transformations applied in sequence is again
a transformation which can be described by the same joint, and (2) the composi-
tion of two transformations must be commutative. Property (1) implies that the
transformations associated with the joint must be subgroups of rigid-body motion,
while property (2) states that these subgroups must be Abelian. Table 4 shows
joints of different degrees of freedom f; possessing these properties. Besides the el-
ementary joints, these are the cylindrical (C), planar translational (2P) and spatial
translational (3P) joints.

7.2 Selection of an Appropriate Solution Flow

After having established the independent loops and their couplings, for the remain-
ing problem of determining an appropriate ordering of the global equations one can
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fe 1 2 3 | 4-6
type | R, P, H{ C,2P | 3P | none

Table 4: Joints yielding linear coupling conditions

imagine the individual loops to be kinematical transformers which are connected
by summing junctions representing the linear coupling equations. The task is now
to find orientations for the edges connecting the loops such that a block diagram
results having the following properties (Hiller and Kecskemethy 1989):

1. The number of external inputs is equal to the number of degrees of freedom
of the system.

2. The number of inputs for each multibody loop L; is equal to the local degree
of freedom fr, of the loop.

3. Each summing junction has exactly one output.
4. There are no closed circuits.

5. The local kinematics of the transformers are recursively solvable.

It is obvious that the complete system of equations is then recursively solvable.

Surprisingly, for many technical applications conditions (1) through (5) can indeed
be fulfilled. These systems are termed recursively solvable systems. Systems for
which not all conditions can be fulfilled are called non-recursively solvable systems.
The most common reason for the appearance of a non-recursively solvable system
is that conditions (1) through (4) can not be accomplished. The cases for which
condition (5) is violated (e. g. for the general case of a TR-mechanism) do not occur
so often in practice and shall not be regarded here.

A very simple method for finding the appropriate orientation of the edges for the
case of recursively solvable systems is to start at the sinks of the system, i.e. where
all edges connected to an element can be oriented into the element. Then, after
finding such an element and orienting the edges, one removes both the element and
the oriented edges and looks for the next sink, and so on. Clearly, the number of
allowed input edges for a kinematical transformer is equal to its internal degree of
freedom, while the number of allowed input edges for a summing junction equals
the number of connections minus one. Also, there will exist branching nodes which
have exactly one input. It may happen that after carrying out this algorithm some
summing junctions or branching nodes remain which do not have enough inputs: this
problem is fixed easily by reversing the direction of an appropriate number of edges
pointing out of the element, re-orienting edges only once in order to avoid dead-
locks. The resulting oriented block-diagram is denominated the “solution flow”.
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As an example of a recursively solvable system, a planar mechanism consisting of
four interconnected planar four-bar loops is considered (Fig. 30). The redundant
set of relative coordinates includes for each loop four variables. Three of these
can be solved as functions of the fourth in closed form, yielding corresponding
kinematical transformers. There are three linear assembly equations occuring in the
joints A, B, C. A sequence of elements for which nnoriented edges can be oriented
as described aboveis: Lys, C, L3, Ly, B, A, Ly . This sequence yields a “solution
flow” which obviously is recursive. Thus the constraint equations of this system are
solvable in closed form.

b) kinematical network
b} kinematical network

Figure 31: A non-recursively solvable sys-
Figure 30: A recursively solvable system  tem

An example of a non-recursively solvable system is shown in Fig. 31. The planar
mechanism consists of five independent multibody loops which are again four-bar
mechanisms. There are four linear assembly equations at the joints A, B, C', D .
From the corresponding block diagram it is clear that the algorithm described above
can not start, because there is no element which has an allowable number of inputs
greater than the number of connections. This situation changes when the summing
junction D is removed and an additional input § is provided. In this case the system
is recursively solvable. The original system results after re-inserting the summing
junction D, yielding an implicit equation for the determination of the function ¢(q).

7.3 Example: The Heavy-Load Manipulator

The heavy-load manipulator was decomposed into three subsystems, each of which
represented a joint unit. For each joint unit, a decoupled kinematical network is
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produced. One of these kinematical networks consists of just one loop (L1), while
the other two contain two loops, which are coupled through a revolute joint. The
resulting block diagrams are shown in Fig. 32, where Ly represents the first joint
unit, and Lq, L3 and Ly, Ls represent the second and third joint unit, respectively.

ﬂ2,8 ﬁ2,11

sof T 1o md {

B2,

Sg—— [, ———» L3 [— B3,

Bis
ﬂmT T Tﬂl’ﬁ ﬁz,zl lﬂz,s ﬁz,sl lﬂm

T T Pas B3,11
ﬂl,zl l’glﬂ ﬂ“T T Tﬂ&g ﬂ3,10T T Tﬂs,m
R YR R

ﬂs,zl lﬂ3,3 ﬁs,sl lﬁs,e

Figure 32: Kinematic networks for the heavy-load manipulator

As depicted in Fig. 32, a recursive solution flow is possible for all kinematic networks.
Thus the system has overall recursively solvable relative kinematics. The solution
starts with the global input coordinates which are entries for the loops L, Ly and
Ly. After solving the constrained equations for these three loops, Lz and Ls can be
calculated using the outputs of Ly and Ly.
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8 TImplicit Solutions for Non Recursively Solvable
Subsystems

In the preceding sections, multiloop systems for which recursive solutions exist were
regarded, and a corresponding methodology for the automated generation of such
solutions was developed. In this section, the case in which such closed-form solutions
do not exist, either because there is no recursive solution flow for the corresponding
kinematical network or because at least one of the kinematical loops is not explicitly
solvable, will be treated. In this case, only an iterative solution is feasible, and the
topological processing is limited to finding an optimal set of closure conditions that
minimize the corresponding numerical effort.

The basic idea for the determination of suitable closure conditions consists in regard-
ing the multibody system as a tree-type mechanism to which additional constraints
have been added. These additional constraints are termed secondary joints, while
the joints of the underlying tree-type system are denoted by primary joints. As with
the topological problems discussed in the previous sections, graph theory offers also
here systematic ways of finding an appropriate topological processing scheme. Here,
the problem consists of finding for a general connected graph a spanning tree that
comprises all nodes of the original graph, but contains no cycles. The edges of the
graph that are not part of the spanning tree form what is denoted the co-tree. Each
edge of the co-tree forms together with the edges of the spanning tree exactly one
loop. Thus the problem of determining a spanning tree is related to the problem of
determining a fundamental cycle set. Of particular interest for the iterative solution
is the notion of the minimum weight spanning tree (Carré 1979, Gondran and Mi-
noux 1984). The minimum weight spanning tree is the spanning tree of a weighted
graph, i.e. one in which each edge is attributed a positive weight, that renders the
smallest value for the sum of weights of its edges. If one employs as weights the
number of elementary transformations involved in each edge, the minimal weight
spanning tree will produce an interconnection structure in which each body can be
reached using the minimal number of transformations, and thus of operations. This
will have two effects: on the one hand, each function evaluation for the iterative
solution will involve a minimal number of operations and thus be more efficient; on
the other hand, the number of transformations left over in the secondary joints will
be maximal, thus reducing the number of constraint equations which correspond to
blocked degrees of freedom of the secondary joints. As a consequence, the minimum-
weight spanning tree approach can reduce dramatically the computational effort of

the iterative solution.

In the following, it will be assumed that the inputs of the system have been as-
signed to appropriate joint variables. For this purpose, the automatic processing
code determines the number of inputs that can be supplied for each cluster, and
then chooses within each cluster as inputs the joints that are shared by the largest
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number of loops. The latter rule has produced very good results for the processed
examples.

8.1 Identification of Secondary Joints

Let the kinematics of the system be described again by a directed weighted graph
G = (K, E), where the weight of each edge e;; corresponds to the number of de-
pendent joint coordinates contained therein. Starting at any arbitrary node K;,

a minimum weight spanning tree is obtained by constructing a sequence of tree
structured graphs, T®) = (K®) F®)) [k =0,1,...,nt — 1, defined as follows.

1: Set K® = {K;} and FO = .

2: Fork=1,...,n—1,let X®*) be the set of edges that have exactly one endpoint
in K1), let e( ) be the shortest edge of X®) and let K; be the endpoint of
e(®) Wthh does not belong to K*~1). Then set

K® = KEDU{K) (74)
FO = gl Ay (75)

On termination, the graph T%#~1) = (K (%=1 F(=1)} is the minimum weight
spanning tree of the graph G sought for.

The co-tree is obtained as the complement of F(*1) in E, i.e.,
C=FE—Fm1 (76)

Note that the co-tree is just the set of secondary joints.

8.1.1 Example: Five-Point Wheel Suspension

As an example of a non-explicitly solvable system, we regard a five-point wheel
suspension of the rear-axis of a modern passenger car (in fact, the Daimler-Benz

W201) (Fig. 33). A schematic model of the wheel suspension is displayed in Fig. 34.

For the description of the system, ny = 7 reference systems were introduced, which
will play the role of nodes in the associated graph. The reference frame Ky em-
bodies the chassis, while the reference frame K3 represents the wheel carrier. The
other five reference frames are attached to the rods. The bodies of the system are
interconnected through five universal joints denoted “U” and five spherical joints

denoted “S”.
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Figure 33: Rear axis of a Daimler-Benz W201

The number of independent loops of the mechanism is np = ng —ng +1 =4. A
minimal cycle basis is shown in Fig. 34, where all loops contain the joints U; and S;.
For each loop, one can generate a kinematical transformer with has f;, = 4 local
degrees of freedom. The coupling conditions between these kinematical transformers
arise at joints U; and S;, which can be regarded to be composed of five elementary
revolute joints G;. For each of these, the number of coupling conditions is p(G;) =
nr(G;) —np(G;)+1=4—2+1=3. Thus, the number of degrees of freedom of the

complete subsystem is

4 5
/= ZfL,- _Zp(gi) =16—-15=1 ,
1=1

1=1
which corresponds to the result of the classical Gruebler-Kutzbach formula.

From the corresponding kinematical network it is not possible to recognize a recur-
sive solution flow. Thus the algorithm switches to the iterative-solution mode, and
proceeds to find an optimal spanning tree. As independent coordinate, one of the
joints angles of U is chosen. Next, a graph is produced which has as nodes the seven
reference frames defined above and as edges the joint interconnections. Each edge
is weighted by the number of degrees of freedom of the joints, which is three for the
spherical joints and two for the universal joints (Fig. 35). Note that one universal
joint is marked with a weight of only one as this is the joint from which the input
variable was chosen.

The algorithm for finding the minimum-weight spanning tree starts with TO) =
(KO, FOY = ({K;},{}). In the first application of step 2, the set of edges
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Figure 34: Schematic model of the five-point Figure 35: Interconnection graph

wheel suspension for a five-point wheel suspension

XU = {ey, €14, €15, €16, €17} 1s produced. From this set, the edge ey is identified
as the shortest one. Therefore, TV = ({K1, Ky}, {e12}) is computed. In the second
application of step 2, the following sets are generated:

x@ = {e14, €15, €16, €17, €23}
K® = {K,K,K4}
F® = {epp,ena} .

After ny — 1 = 6 repetitions of step 2, one obtains the minimum-weight spanning
tree as

T(G) = <{IC1, ICz, IC4, ’Cs, ’Ce, ’C7, K:S}, {6127 €14, €15, €16, €17, 623}) .

The set of secondary joints is C = {eq3s, €53, €63,€73}. In this case, each of the
secondary joints is a spherical one.

8.2 Formulation of Cut-Set Equations

After identifying the sets of secondary joints C, the corresponding constraint equa-
tions need to be formulated. Basically, each joint has associated with it a set of
constraint equations. For a joint with fg, degrees of freedom, the number of these
constraint equations is n, = 6 — fg, for the spatial case and n, = 3 — fg, for the
planar or spherical case. The formulation of the constraint equations for different
types of joints poses no fundamental problem. Here we describe the constraint equa-
tions for two types of joints which occur particularly often in the analysis of vehicle
dynamics: (I) the spatial spherical joint and (II) the planar revolute joint. Further
sets of constraint equations can be found for example in Nikravesh 1988 or Wehage

and Janosi 1993.
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Figure 36: Constraint equations for a spherical joint

8.2.1 Constraint Equations for a Spherical Joint

The spherical joint involves n, = 6 — 3 = 3 constraint equations for the spatial
case. For their formulation, one introduces a reference system at each end of the
spherical joint, which will be denoted as K4 and Kp, respectively (Fig. 36). The
constraint equations state that the position of the origins of the frames K4 and Kp
with respect to a common frame K; along two branches P4 and Pg must coincide.
With the corresponding representations

r4s = Rot[Ap,]T Trans[Ap,] , (77)
rg = Rot[Ap,]? Trans[Ap,] , (78)

e )

the closure condition becomes
ira—1rg=0 . (79)

Hereby, the branches P4 and Pg are known from the minimum weight spanning
tree algorithm.

The corresponding linear velocity constraint equations result from

ra—1tp =10, (80)
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with
Y, =Rot[Ap, T A5, , {74 =Trans[['Talp,] [Blr. (81)
g =Rot[Ap,|T Prp , Pip=Trans[['Jslp,] [Blrs (82)

where Trans[['Ja]p, | and Trans[['Jp]p, ] represent the translational part, i.e.,
the last three rows, of the Jacobians associated with the two paths P4 and Pg,
respectively. Derivation of equation (80) with respect to time yields the acceleration
constraint equation

iy~ lip =10, (83)
with
1f4 = Rot[Ap,]T {fs . . } (84)
#ia = Trans[['Jalp,] [Blp, + Trans[['Jalp, ] [Blp, |
¥ = Rot[Ap, | Tip _ . , } (85)
llgﬁB = Trans| [1.]3]733 ] [ﬁ]pB + Transg| [1JB]PA ] [_@]PA

8.2.2 Constraint Equations for the Planar Revolute Joint

The planar revolute joint results from the application of a spherical joint in a planar
system. In this case, the number of constraint equations is n. = 3—1 = 2. Supposing
that the plane of motion is spanned by the basis vectors ¢; and ¢;, and that the
direction of the axis of the revolute joint is thus e, = g; X ¢;, the two constraint
equations can be written as

ira lelp, —ire ['elps = 0, (86)
%EA [léﬂh - %EB [léj]PE =0, (87)
with

I8

ledm, = Rot[Ap,] & ['elpn = Rot[Ap, ] &
NG Ll e BN B O &)

The corresponding equations for velocities and accelerations are

ita (el —1t8 [lelps, = 0, (89)

ia lelp, — 18 lelrs = 0, (90)
and

1r4 [ GZ]PA - %T—B [lgi]PB = 3 (91)

1L4 [ GJ]PA - %EB [19]']7’13 =0 (92)
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9 Global Kinematics

As a final step of the kinematical processing, the absolute motion of the constituent
bodies has to be calculated. To this end, one needs expressions for the relative
motion at all joints and an arrangement of paths leading from the frame of reference
to the bodies of the complete system. With the modules described so far, these issues
have already been addressed on a cluster-by-cluster basis. This section discusses an
overall procedure for amalgamating the derived results into a global processing

module.

9.1 Global Representation of System Topology

In the preceding sections, several concepts were introduced related to the topologi-
cal and geometrical processing of subsets of a general multibody system. For each
of these concepts, a tailored topological system description was introduced that
made it possible to formulate and solve the associated problems most efficiently.
At this point, it is necessary to bring together the aforementioned results and to
integrate them into an overall procedure. In order to ease this integration process,
the topological information gathered so far was cast into a SOLVAS-compatible
format, which is the format currently in use at the System Simulation & Techni-
cal Division Group at U.S. Army TARDEC. This format is based on a number of
graph-theoretic concepts that were developed at U.S. Army TARDEC (Wehage and
Belczynski 1993), and are explained below.

9.1.1 The Arc Connectivity Matrix C,

The arc connectivity matrix describes the spanning-tree part of a graph. Each node
of the graph, apart from the root, is associated with a column of this matrix.
Moreover, each arc corresponds to a row. The matrix C, is thus a square matrix.
An element of a row is 1 when the associated arc starts at the corresponding node,
-1 when the associated arc ends at the corresponding node, and 0 otherwise. As
the root node does not appear in the matrix, all rows associated with arcs for which
the start node is the root exhibit only one 1 apart from zeroes. By an appropriate
permutation of columns and rows, C, can be made strictly lower triangular.

9.1.2 The Chord Connectivity Matrix C.
The chord connectivity matrix describes the co-tree of the graph. Again, the columns

are associated with the nodes of the graph, and the root node is not included in the
matrix. Each row now corresponds a chord, i.e. an element of the row is 1 if the
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column is associated with the start node of the chord, -1 if this column corresponds
to the end node of the chord, and -0 otherwise. Note that C. is a rectangular
matrix that describes also a set of independent loops, as each chord can be uniquely
assigned to one loop of the system.

9.1.3 The Path-Tracing Matrix R,

This matrix, defined in Wehage and Janosi 1993, is a square, strictly lower triangular
matrix that results as the inverse of C, . Each row describes the (unique) path from
the root to the terminal node of one arc, without counting chord interconnections.
The nodes which are part of the path are identified by a 1 in the corresponding
column of the row, while all other elements are zero.

9.1.4 The Loop Closure Matrix R,

This is the right inverse of the chord connectivity matrix, R., which can be computed
as R. = —C. R, (Wehage and Janosi 1993). Each row of this matrix corresponds
to the loop associated with a chord, the nonzero entries identifying the arcs which,
together with the chord at hand, will form the loop. If, upon cycling in direction
of the chord through the loop, the arc is traversed in its own sense, the entry is 1,
otherwise, i.e., if the arc is traversed in opposite sense, the entry is -1.

9.2 Generation of System-Topology Matrices

The path-tracing matrix R, and the chord connectivity matrix C. can be calculated
directly from the internal path data generated during the decomposition and loop
detection algorithms. Hereby, one proceeds cluster by cluster, beginning with the
system reference frame, and taking as starting node for each cluster the end of the
bridge that connects it to the preceding cluster. For each cluster, one has one of the
following three cases:

1. Tree-type clusters. In this case, the matrix C; is empty, and the path-tracing
matrix is obtained by traversing the bridges from node to node.

2. Non-recursively solvable clusters. Here, the path tracing matrix is just a copy
of the minimum-weight spanning tree representation, and the chord connectiv-
ity matrix corresponds to the elements of the co-tree established in Section 8.

3. Recursively solvable clusters. In this case, the path-tracing matrix is generated
from the row of the shortest-path matrix P described in Section 4, which
describes the shortest paths from the local root to all other nodes of the
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subsystem. Matrix C, results as the set of edges not contained in this row of

P.

After determining C. and R, , the other two matrices, C;, and R., are established
as the inverse of B, and R. = —C. R,, respectively.

9.3 Generation of Absolute Kinematics

After establishing the four matrices described above, the generation of the absolute
kinematics consists in tracking the paths between the bodies of the system and
the global reference frame and superposing the known expressions for the relative
kinematics at the corresponding arcs using the kinematical expressions for serial
chains described in Section 2.3. Hereby, one can employ the information stored
in the path-tracing matrix R,, re-using intermediate expressions by traversing the
spanning tree in a width-first manner.

9.4 Example: Wheel Suspension of a Trailer

The generation of the SOLVAS-compatible topological system representation matri-
ces as well as the expressions for the absolute kinematics shall be illustrated for the
wheel suspension described in Section 2.6.2. The corresponding graph is displayed
in Fig. 37, where the arcs are represented as full lines and the chord is represented
as a dashed line. Note that this system is recursively solvable, so the arcs result from
the shortest-path matrix generated with the methods of Section 4. The resulting
connectivity and path matrices are thus

Ky K Ky Ks Ko K7 Ks Ko K3 Ky Ks Ko Ky Ks
1 0 0 0 0 0 0 |en 1 00 0 0 0 0 |e
01 00 0 0O €13 01 0 0000 €13
—10 1 0 0 0 0 |eu 1 01 0 0 0 0 |eu
Co=]10 0-11000|es » Ba=]101 100 0 |ess >
0 -10 0 1 0 O €36 0 1 00100 €36
0 0 0 0—-11 0 |eer 001 01 1 0 |esr
L 0 0-10 0 01 1 €48 1 01 0 0 01 1 €48
’Cz ]C3 }C4 ICS /Cg }C7 K:g ,Cz ICg ,C4 IC5 ,Ce }C7 ]Cg

Co=[000-1010]esr » Be=[1 =11 1-1-10] e

Hereby, the frames K; act as nodes, while the edges e;; correspond to the transfor-
mations between the reference frames.

With these matrices, the absolute kinematics can be generated by issuing the fol-

lowing command
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K, 7 Ks K

Figure 37: Topological structure of the trailer wheel suspension
GenerateGlobalKinematics{K,{s,alpha,beta,gammal},{s},{6,7,8}]

Here, XK is the frame interconnectivity matrix defined in Section 2.6.2,
{alpha,beta,gamma} is the list of dependent joint variables (which have been sup-
plied by the user as variables of the corresponding joints), {s} is the list of inde-
pendent variables (again supplied by the user), and {6,7,8} is the list of indices
of reference frames for which the absolute motion is desired to be produced. The
ensuing code produced by the program is

R6[1, 1] -> 1; Re[1, 21 > 0; R6[1, 3] -> 0

R6[2, 11 -> 0; R6[2, 2] -> cos[betal; R6[2, 3] -> -sin[betal
R6[3, 11 -> 0; R6[3, 2] -> sin[betal; R6[3, 3] -> cos[betal
R7[1, 11 —> 1; R7[1, 2] -> 0; R7[1, 3] > 0

R7[2, 1] -> 0; R7[2, 2] -> cos[betal; R7[2, 3] -> -sin[betal
R7[3, 1] —> 0; R7[3, 2] —> sin[betal; R7[3, 3] -> cos[betal
rR8[1, 1] -> 1; R8[1, 2] -> 0; R8[1, 3] -> 0

R8[2, 1] -> 0; R8[2, 2] -> coslalphal; R8[2, 3] -> -sin[alpha]
R8[3, 1] -> 0; R8[3, 2] -> sinlalphal; R8[3, 3] -> cosfalphal
ré6f1] -> 0

r6[2] -> v2y cos[betal] - v2z sinl[betal

r6[3] -> -(v2z cos[betal) - v2y sin[betal

r7[1] -> 0

r7[2] -> ADH18[2, 4] cos[betal + ADH7[3, 4] sin[betal
r7[3] -> ADH7[3, 4] cos[beta] - ADH18[2, 4] sin[betal
r8[1] > 0

r8[2] -> ADH19[2, 4] cos[alphal + ADH20[3, 4] sin[alphal
r8[3] -> ADH20[3, 4] cos[alphal - ADH19[2, 4] sin[alphal

omega6[1] -> beta’; omega6[2] -> 0; omega6[3] -> 0

omega7[1] -> beta’; omega7[2] -> 0; omega7[3] -> 0

omegag8[1] -> alpha’; omega8[2] -> 0;  omega8[3] -> 0

ve[1] -> 0; ve[2] -> 0; ve[3] -—> ©

v7[1] -> 0; v7[2] -> s beta’; v7[3] > -s’

vg[1] -> 0; v8[2] > O; v8[3] -> -(v4y alpha’)
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JACR17[6]1 -> s beta’
JACR20[5] -> v4y alpha’
JACR19[5] -> 2 beta’ s’
JACR19[6] -> JACR17[6] beta’
JACR21[5] -> JACR20[5] alpha’

alpha6[1] -> beta’’; alphas[2] -> 0; alpha6[3] -> 0

alpha7[1] -> beta’’; alpha7[2] -> 0; alpha7[3] -> 0

alpha8[1] -> alpha’’; alpha8[2] -> 0; alpha8[3] -> 0

a1l -> 0; a6[2] —> 0; a6[3] -> 0

a7[1] -> 0; a7[2] -> JACR19[5] + s beta’’; a7[3] -> JACRi9[6] - s?
ag[1] -> 0; as[2] -> JACR21[5]; a8[3] —> -(v4y alpha’’)

Here, it is assumed that the relative kinematics have already been solved, i.e.,
that the functions a(s), 8(s) and y(s) as well as their first and second derivatives
o = dofs)/ds, o' = d’a(s)/ds?, etc. with respect to s are known. The corre-
sponding expressions are calculated during the processing of the relative kinematics
and are not re-substituted here in order to avoid redundant multiplications. Note
that terms sin[beta] and cos[betal appear repeatedly in the expressions. At first
sight, this might look like a redundant repeated evaluation of the computationally
expensive trigonometric functions. However, this is not the case, as the actual func-
tions of Mathematica are spelled out with the first letter in upper case. In fact, the
aforementioned terms represent just constants that are calculated exactly once in
the program and then used repeatedly in the resulting expressions.
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10 Overview of the Implementation

The described methods were implemented using the symbolic programming lan-
guage Mathematica. The resulting program, named SYMKIN, has about 4700 lines
of code. The program is designed such as to perform all operations fully automati-
cally. It is organised in nine modules, each of which is dedicated to one of the main
processing stages of the algorithm developed above. These nine stages stem from
the gradual decomposition of the system into subsystems which either are solvable
in closed form or must be treated iteratively. For better clarity, this gradual decom-
position and processing operations is summarized next based on the example of the
heavy-load manipulator introduced in Section 2.6.3 and depicted in Fig. 38.

| |

(c) tree type
(a) recursively (b} non recursively
solvable solvable

1. Detection of smallest

loops .
2. Solution of local iterative solution 1 JGaecr:)ebriaa(:\?;\]A:Irice s

kinernatics (Determination of 2. Postion-, velocity- &
3. Assembly of individual secondary joints) . accelera‘tion quations

loops as a kinematical
network

independent .
coordinates q relative kinematics absolute kinematics mouon, of
(input) all bodies

Figure 38: Overview of the modules of the SYMKIN package

Starting from a general system, a kinematic description is established and brought
to normal form (Module 1). From this system, a set of subsystems is determined
in which the bodies either are connected as loops, or form tree-type structures
(Module 2). For each of the subsystems containing loops, which are termed “clus-
ters”, a set of smallest independent loops is established (Module 3). Then, a corre-
sponding loop interconnection scheme, termed the “kinematical network”, is com-
puted, and it is decided whether the kinematics of the interconnected set of loops
is recursively solvable or not (Module 4). If the kinematics of the multiple-loop
subsystem are solvable in closed form, each of the loops is further processed and
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a set of local closed-form solutions is generated for it, covering position, velocity,
and acceleration (Module 5); then, the so-established local loop solutions are assem-
bled together using the information of the kinematical network (Module 6). If the
multiple-loop subsystem is not solvable in closed form, a set of constraint equations
for their iterative solution is produced, and corresponding equations for velocities
and accelerations are generated (Module 7). After generating in this way the local
solutions for each cluster, the characteristic matrices for establishing the intercon-
nection structure of the overall system are determined (Module 8). Finally, based on
this information, and the information produced in the previous modules, the kine-
matical expressions for the absolute motion of all bodies is generated (Module 9).
The hierarchical decomposition of the clusters, together with the different types of
kinematical processing, are illustrated in Fig. 39.

relative kinematics

cluster 1

loop 1

postion equations
velocity equations
acceleration equations

( loop 2 I

cluster 1

explicitely solvable

k loops

.
.
3

[ wr ]

cluster 2

bridge

nonlinear system of equations
for joint coordinates

cluster 2

linear system of equations

t icitely solvable
not explicitely solva for joint velocities

liner system of equations
for joint accelerations

cluster 3
. .
L] L3
. L]
cluster n l cluster n J

‘ absolute kinematics ‘

Figure 39: Hierarchical decomposition of a complex multibody system
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10.1 Main Functions of the Package

The Mathematica package developed during this project has over 120 functions. A
detailed description of all functions is thus beyond the scope of this report. In order
to ease the use of the code, these operations were grouped in 15 mayor function calls
through which the user can produce the desired sets of equations. These functions

shall be described below (see also the tables (5), (6), (7)), (8)) and (9)).

The main functions basically mimic the main processing stages of the algorithm
and are organized as follows:

0. System Description Stage.

The basic information that the user needs to supply are the frame connectiv-
ity matrix K, the set of joint variables, and a set of user-desired independent
joint variables. The set of joint variables marks the parameters in the trans-
formation matrices that are to be treated as non-constant quantities, i.e., for
which velocity and acceleration are to be taken into account. The second set
of variables represents the independent variables that the user wants to be
employed as inputs to the system. This set does not have to be complete, i. e.,
the user can supply only a subset of input variables and leave the determi-
nation of the remaining independent variables to the program. In particular,
the user-supplied set of independent variables can be empty, meaning that
all inputs are to be established automatically. In order to build the frame
connectivity matrix, one needs to dissect the multibody system into a set of
elementary components, which can be joints, links, or assemblies hereof, and
to mark the endpoints of these components by reference frames. The columns
and rows of the matrix then correspond to the different reference frames of the
system. The user supplies those elements of the matrix for which an intercon-
nection between two neighboring nodes exists, prescribing the transformation
sequence from the node associated with the corresponding row to the node
associated to the corresponding column. Most of the elements of this matrix
are thus empty. The model of the frame connectivity matrix K and the set of
allowed transformations are described in Section 2.

1. Parameter Normalization.
Non-elementary transformations like e.g. the Denavit-Hartenberg parameters
and other composite transformations need to be reduced to sequences of el-
ementary transformations in order for the algorithms to work properly. Nor-
mally, the normalization is carried automatically when one of the global pro-
cessing functions described below are invoked. However, the user can carry out
this normalization explicitly by invoking the function SimplifyChain[...].

2. Detection of Clusters.
With the function FindLeaves[...], the independent clusters of the system
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are recognized and returned. As input, the adjacency matrix for the complete
system, as well as the set of joint variables and the desired input coordinates
are provided. Return value is an adjacency matrix and a set of joint variables
for each cluster.

. Generation of Independent Loops.

GetLoopBasis[...] generates a minimum cycle basis for one cluster, return-
ing the set of cycles as the sequences of transformations and the sets of nodes
that form one loop, respectively. The input for this function is the adjacency
matrix for one cluster, as well as the set of joint variables and the desired

input coordinates, as described above.

. Determination of Kinematical Networks.

The function GenerateNetwork[. . .] recognises the couplings between the in-
dependent loops and generates the corresponding kinematical network. From
this, it is checked whether there exists a recursive solution flow for the kine-
matical network. If this is the case, a list of input variables representing the
recursive solution flow is generated for each loop. If not, the subsystem is
marked as “non-recursively solvable” for subsequent steps. The input for this
function is a set of independent loops and the set of joint variables and the
desired input coordinates, as described above.

. Closed-Form Loop Solution.

The function SolveSingleLoopl[. ..] generates closed form solutions for each
single loop, taking as input a sequence of transformations, as well as the
set of joint variables and the desired input coordinates, as described above.
The generation of the local loop kinematics occurs in several steps: (1)
GenerateConstraints[...], produces the set of scalar equations that can
be solved in closed form, and determines the corresponding expressions for
the coefficients A, B, C'. Then, SolvePositionEquations[...] resolves these
equations, producing either two solutions or one unique solution per equation,
as applicable. Finally, expressions for the first and second time derivatives of
the dependent joint variables are determined via GenerateVelocities[...]
and GenerateAccelerations[...]. If the algorithm fails to find such a
closed-form solution, it stops again, and the loop is termed “non-recursively-
solvable”.

. Generation of implicit solutions.

For subsystems which are not explicitly solvable, a minimal set
of constraint equations needs to be generated. This is done by
GenerateImplicitEquations[...]. The function takes as inputs the ad-
jacency matrix of a cluster, a set of transformation sequences of the loops
representing the independent loops, as well as the set of joint variables and
the desired input coordinates, as described above. Passing the set of trans-
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formation sequences allows the function to recognize planar or spherical sub-
systems within the cluster and to generate the appropriate constraint equa-
tions. The said function returns a sequence of constructs termed Numeri-
cal Solution Forms or NSF[substitutions,equations,coordinates], where
equations denotes the set of implicit constraint equations to be solved itera-
tively, coordinates are the dependent variables, and substitutions repre-
sents a set of intermediate-value substitutions that arise in equations. Each
numerical solution form corresponds to one scalar equation, which in general
is implicit in the unknowns coordinates. The equation can be either nonlin-
ear for the case of the position equations, or linear for the case of the velocity
and acceleration equations.

. Merging of Equations.

This function, termed MergeEquations[. ..] merges all global equations and
reorders them such that all terms appearing on the right side of any assign-
ment have been defined in previous steps. The input for this function are the
equation for the joint coordinates and their first and second derivative which
were generated by SolveSingleLoopl[...].

. Generation of SOLVAS-Matrices.

The function GetTopologicalStructurel...] generates matrix-representa-
tions of the system topology that are compatible with the input format for the
SOLVAS preprocessor of the System Simulation & Technical Division Group
at U.S. Army TARDEC. The input for this function is just the global node
adjacency matrix defined in stage 0. The generated matrices are the node
connectivity matrices, the loop matrix for the minimal-cycle basis, as well as
the matrix of shortest paths from the base to the bodies of the system. C,
and R, are brought to lower triangular form by an appropriate column and
row pivoting. The corresponding permutations of columns is stored in a list
containing, for each column, the reference frame associated with it.

. Generation of Absolute Kinematics

With the function SolveAbsoluteKinematics[...],the absolute orientation,
position, velocity and acceleration of a set of specified reference frames can be
computed. Hereby, the paths from the base to all bodies are taken according
to the information stored in R,. The function takes as inputs the global node
adjacency matrix, the shortest-path matrix R,, the column-permutation list
defined in the previous stages, the list of frames of interest, as well as the set
of joint variables and the desired input coordinates, as described above. As a
result, it returns a sequence of equations for the absolute kinematics.

Apart from these functions, there are a number of convenience functions which allow
to perform several steps at once or produce some simplifications of the resulting
equations. These are
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% GenerateGlobalKinematics. This function produces the complete kinemat-
ics, including relative kinematics, closed-form and iterative solutions, and ab-
solute kinematics.

* SolveRelativeKinematics. This function determines the relative motion at
all joints of a multiple-loop cluster in terms of the independent joint variables
and their their first and second time-derivatives.

* GetSubstitutions. This function generates a set of assignments for the inter-
mediate expressions generated so far by the equation processing algorithms.

An overview of the function invocation hierarchy is depicted in Fig. 40.

parameter | meaning

K adjacency matrix

jointVars | list of joint variables

inputVars | set of user-desired input variables

Table 5: Basic input parameters for kinematic processing modules

function invokation return parameters
leafs = FindLeafs[K,jointVars, leafs[[1]] : list of adjacency matrices for
inputVars] the leafs
leafs[[2]] : list of joint variables for the leafs
leafs[[31] : list of input variables for the leafs
loops = GetLoopBasis[K,jointVars, loops[[1]] : list of transformation sequences
inputVars] fo the loops
loops[[2]] : sets of nodes for the loops
solutionflow = GenerateNetwork[ solutionflow : List of inputs for single
loops[[1]1], loop kinematics
jointVars, inputVars]
ts = GetTopologicalStructurelK] ts[[1]1] : list showing the permutation of
columns
ts[f2]] : R,
ts[[31] : C,
ts[[4]] : R.
ts[[51]1 : C.

Table 6: Main routines for the topological processing
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10.2 Example of a Complete Kinematics Processing Session

The discussed procedures where applied to the example of the wheel suspension of
a trailer described in Section 2.6.2. Shown in Fig. 41 is the result of the program
after issuing the command “GenerateGlobalKinematics”. As it can be seen, the

complete kinematics for this system fit into one sheet of paper.

In[1]):* << GlobalKinematics.m R6[3, 3] -> Cos[betal
In[2]:= ¥=Table[Null,{8},{8}]; R7[1, 1] > 1
Inf3):= K[[1,2)] = ETransform{2,1,viy); R7[1, 2] > 0
In[4):= K[[1.3]] = ETransform[2,t,v2y).ETransform(3,1,-v2z]); R7[1, 3] -> 0
In[s}:= K[[2,4]] = ETransform[1,0,alphal; R7[2, 1] > 0
In[6):= K[[4,5]]1 = ETransform[2,1,-v3yl.ETransform{3,1,v32); R7[2, 2] -> Cos[betal
In[7):= K[[3,6]] = ETranstorm[1,0,betal; R7{2, 3] -> -Sin[betal
In(8):= K[[7,6]1] = ETranstorm[3,1,s]; R7[3, 1] > 0
In[9):= K([5,7]] = ETransform[1,0,gammal; R7[3, 2] -> Sin[betal
In[10}:= K[[4,8]] = ETransform[2,1,-v4yl; R7[3, 3] -> Cos[betal
In[11}:= Joints = {s,alpha,bota,gamma} R8[1, 1] > 1
In[12]:= Inputloints = {s}; Rr8[1, 2] -> 0
In[13]:= GenaerateGlobalKinematics[X, Joints, Inputloints,{6,7,8}]; R8[1, 3] => ©
In[14]:= % //TableForm R8[2, 1] > ©
Out[14]:= //TableForm= R8[2, 2] -> Cosfalpha]
ADH1[2, 4] -> -viy + w2y R8[2, 3] -> -Sin[alpha]
2 R8[3, 1] -> 0
ADH3{1, 1] -> s R8[3, 2] ~> Sin[alpha]
2 2 R8[3, 3] -> Cos[alphal
ADHS(1, 1] -> v3y + v3z 6f1] -> 0
2 2 r6[2) -> v2y Cos[betal - v2z Sin{beta]
ADH2(1, 1] -> v2z + ADHi[2, 4] r6(3] -> -(v2z Cos[betal) - v2y Sin[beta)
beta -> -ArcTan[sqrt[-1 + r7[1} > 0
2 2 2 r7[2) -> ADH18[2, 4] Cos[beta] + ADH7L3, 4] Sin[betal
4 s (v2z + ADH1[2, 4] ) r703] -> ADHT[3, 4] Cos{betal - ADH18[2, 4] Sin[betal
> 311+ rsf1] -> 0
2 r8[2] ~-> ADH19[2, 4] Cos[alpha] + ADH20[3, 4] Sin{alphal
(ADH2[1, 1] + ADH3{1, 1] ~ ADHS[1, 11) r8[3] -> ADH20[3, 4] Cos[alpha)] - ADH1S[2, 4] Sinfalphal
> ArcTan{-2 s v2z, -2 s ADR1[2, 41] omega6[1] -> beta’

ADHB[2, 4] -> s Sin[betal

ADHB[3, 4] -> ~(s Cos[betal)

ADHE[2, 4] -> -viy + v2y + ADH8[2, 4]
ADH7[3, 4] -> -v2z + ADHB[3, 4]

-(v3y ADH6[2, 41) + v3z ADH7[3, 4]

omega6f2] -> 0
omega6{3] -> 0
omega7l1] -> beta’

omega7(2] -> 0

omega7(3} -> 0

omega8{1] -> alpha’

alpha -> ArcTan[ N omega82] -> 0
2 2 omega8[3] -> 0
vy + v3z vé[1} > 0
ADH14[2, 4] -> v3y Cos[gammal - v3z Sin[gammal v6[2] -> 0
ADH14[3, 4] -> -(v3z Cos[gammal) - v3y Sin[gamma] v6[3] -> 0
s’ v7[1} >0
alpha’ -> --- - v7[2] -> s beta’
ADH14[2, 4] v7[3] -> -s?
ADH14[3, 4] alpha’ v8[1] -> 0
beta? => momwmomm———ooemmee v8[2] -> 0
s v8[3] -> -(v4y alpha’)

amma’ -> -alpha’ + beta’

JACRE[6] ~> -(s beta’)

JacR8{5) -> -(ADH14[2, 4] alpha’)

JACR8[6] -> ~(ADH14{3, 4] alpha’)

JACRS{5] -> ~(ADH14{2, 4] alpha’) ~ ADH14[2, 4] gamma’
JACR9[6] -> -(ADH14[3, 4] alpha’) - ADH14[3, 4] gamma’
JACRIO[S] -> -(JACR9[S] alpha’) - JACRB[S] gamma’
JACR10[6] -> ~(JACR9[6] alpha’) - JACRB[6] gamma®
JACRT{6] ~-> ~(JACR6[6] beta’)

alpha’’ ->

-JACR10[6]1 + JACRT[6] + s°’

ADK14[2, 4]
-JACR10[5] + ADH14[3, 4] alpha’’

JACR17(6] -> 5 beta’
JACR20(5] -> v4y alpha’
JACR19[S] -> 2 beta’ s’
JACR19[61 ~> JACR17[6] beta’
JACR21[S] -> JACR20[5} alpha’
alphas[1] -> beta’’
alpha6[2] -> ©

alphas(3] -> 0

alpha7[1] -> beta’’
alpha7[2] -> 0

alpha7[3] -> 0

alpha8[i] -> alpha’’
alpha8f2] -> 0

beta’’ -> alphagl3] -> 0
s asf1] >0
gamma’’' -> -alpha’’ + beta’’ as{2} -> 0
Ré[1, 1] —> 1 a6[3] >0
Ref1, 21 > 0 a7(1] -> 0
R6[1, 3] => 0 a7[2] -> JACR1S[S] + s beta’
R6(2, 11 -> 0 a7[3] -> JACR19[6] - s’
R6[2, 2] -> Coslbetal ag{1] -> ¢
R6{2, 3] -> -Sin[betal ag[2] -> JACR21(5]
R6[3, 1] -> 0 agf3] -> -(v4y alpha’’)

R6[3, 2] ~> Sin[betal

Figure 41: Mathematica-session for the trailer wheel suspension
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11 Example: A Comprehensive Mixing Unit of
the Control Mechanism of a Helicopter

As an example of a complex mechanical system, we regard in the following a subunit
of the control mechanism of the main rotor of the helicopter “BO 105” of the German
manufacturer Messerschmitt-Bolkow-Blohm MBB shown in Fig. 42.

Figure 42: Helicopter Messerschmidt-Bolkow-Blohm BO 105

The task of the control mechanism is to transmit the actuation of the steering
levers in the cockpit to the orientation of the rotor blades, as shown in Fig. 43. The
actuations are performed in one of three ways: a longitudinal actuation @, and a
lateral actuation O, of the cyclic stick, and a vertical actuation @¢ of the collective
pitch lever. The control motions of the pilot are transmitted by four-bar mechanisms
and amplified in an hydraulic unit. From there they are further transmitted to the
mixer unit, where the three control motions are superposed and brought to the fixed
part of the swash plate. The attitude of the swash plate effects a cyclic motion of
the rotating control rods that finally realize the desired angle of aviation v of the
blades a a function of main rotor rotation angle o.

The subunit regarded here is the mixer unit, which is depicted again in Fig. 44
for easier reference. The mechanism consists of 16 bodies, including the base body,
which are interconnected by 21 joints. The corresponding joint variables are dis-
played in Table 10. The overall degree of freedom of the unit is f = 3. In the
following, the generation of the complete kinematics, i.e., the position, velocity,
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. tandem
collective hydraulic unit
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longlitudinal
cyclic stick control rod
collective
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%eral control rod

Figure 43: Control mechanism of the main rotor

and acceleration transmission functions, for the mechanism will be regarded. The
choice of the independent variables as well as the selection of an appropriate set of
independent loops will be left to the algorithm.

In order to state the topological description of the system, we need an appropriate
frame adjacency matrix K, for which we associate with each body one reference
frame. These associations are depicted in Fig. 45, where the actual positions of the
frames are not displayed for better clarity. For example, Ky describes the base body,
while K, K5 and K4 represent the lateral, collective, and longitudinal control of the
mechanism, respectively. The non-rotating part of the swash plate is represented
by K16 and the non-rotating control rods by K4 and K1s. Apart from the reference
frames, Fig. 46 shows also the link lengths and the joint denominations. According

97




to this, and together with the symbols of Table 10, the input file for the SYMKIN
package takes the form depicted in Fig. 46. Note that no joint coordinates are
specified as input coordinates, so that the program must select appropriate ones.

Figure 44: Mixer unit of the control mechanism of the main rotor

ljoint I joint coordinates ’ type ” joint f joint coordinates | type J
Ry o revolute P 81 prismatic
R, b revolute P Sy prismatic
B b3 revolute P 83 prismatic
R4 b4 revolute P, S4q prismatic
Rs s revolute
1i B, B2 universal || S @1, Do, 3 spherical
Ty B3, P4 universal | S ¢4, Ps, 6 spherical
15 Bs, Bs universal || S3 ¢, s, Po spherical
Ty Bz, Bs universal || Sy ®10, P11, P12 spherical
Ts Ba, B1o universal || S5 b13, P14, P15 spherical
T Bi1, P12 universal || Sg P16, P17, D18 spherical

Table 10: Joints of the helicopter mixer unit
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Figure 45: Schematic view of the mixer unit
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<< GlobalKinematics.m

K
K[[1,2]]
K[[1,3]]
K[[1,4]1]
K[[1,51]

K[[1,6]]
K[[2,7]]
K[[3,8]]
K[[4,9]]
K[[7,101]
K[[5,111]
k([s,11]]
K[[9,12]1]

K[[11,6]1]
K[[10,15]]

K[[12,14]1]
K[[6,13]]

K[[13,16]]
K[[16,15]]

K[[16,14]]

K[[10,11]]
K[[12,11]1]
Joints

Bodies

Table[Null,{18},{16}];

= ETransform[1,1,11] .ETransform[3,1,s[11];
= ETransform[3,1,s[2]];
= ETransform[1,1,-11].ETransform[3,1,s[3]];

ETransform[2,1,-12] .ETransform{3,1,13] .ETransform[3,0,-phi[12]].
ETransform[2,0,-phi[11]].ETransform[1,0,-phi[10]].
ETransform[3,1,a2/2];

ETransform{2,1,-12-14] .ETransform[3,1,s{4]];
ETransform[1,0,betal[1]].ETransform{2,0,betal2]].
ETransform[3,1,a1/2];
ETransform{1,0,betal[3]].ETransform[2,0,betal4]].
ETransform([3,1,a1/2];
ETransform[1,0,betal[5]].ETransform[2,0,betal6]].
ETransform[3,1,a1/2];

ETransform[3,1,a1/2] .ETransform[1,0,phil1]].ETransform[2,0,phi[2]].
ETransform[3,0,phi[3]].ETransform[2,1,-b1];
ETransform[3,1,a2/2] .ETransform[2,0,-betal8]].
ETransform[1,0,-betal[7]].ETransform[2,1,-e];
ETransform[3,1,a1/2] .ETransform[1,0,phi[4]] .ETransform{2,0,phi[5]].
ETransform[3,0,phi[6]] .ETransform[2,1,-h1];

ETransform[3,1,a1/2] .ETransform[1,0,phi{7]] .ETransform[2,0,phi[8]].
ETransform[3,0,phi[9]].ETransform[2,1,-b1];

ETransform[2,1,~h2] .ETransform[1,0,-delta[3]].ETransform[3,1,h3];

= ETransform[2,1,-b2] .ETransform[1,0,betal[9]].

ETransform[2,0,betal10]1].ETransform[3,1,d/2];
ETransform[2,1,-b2].ETransform[1,0,betal11]].
ETransform[2,0,beta[12]].ETransform[3,1,d/2];

ETransform[3,1,h4] .ETransform[1,0,delta[4]] .ETransform[2,1,-£/2];
ETransform{2,1,-f/2] .ETransform[2,0,delta[5]];

ETransform[1,1,c1] .ETransform[2,1,c2] .ETransform[1,0,phi[13]].
ETransform[2,0,phi[14]] .ETransform[3,0,phi[15]].
ETransform[3,1,-d4/2];

ETransformf1,1,-c1].ETransform[2,1,c2] .ETransform[1,0,phi[16]].
ETransform[2,0,phi[17]] .ETransform[3,0,phi{18]].
ETransform[3,1,-d/2];

ETransform[1,0,~delta[1]] .ETransform[1,1,-g];
ETransform[1,0,-delta[2]] .ETransform[1,1,g];
{s[1],s[2],s[3],s[4],
betal1],beta[2],betal3],betal4],betal5],betals],
betal[7],betal8],betal9],betal10],betal11],betal12],
phil1],phil[2],phi[3],phil4],phil6],phil6],phil7],phil8],phile],
phi[iO],phi[il],phi[12],phi[13],phi[14],phi[15],phi[16],phi[17],
phi[18],deltal1],deltal2],deltal3],deltal4],deltal5]}
{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};

SolveGlobalKinematics[K,Joints,{},Bodies]

Figure 46: Input data for a Mathematica session of the mixer unit
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With the user-supplied frame adjacency matrix, the resulting graph takes on the
from depicted in Fig. 47. Clearly, the system consists of just one cluster, or leaf. A
suitable minimum cycle basis consists of following six loops

Li = {es,e€11,10, €10,15, €15,16, €16,13, €136} ]

L, = {66,11a €11,12, €12,14; €14,16, €16,13, 613,6}

Ly = {66,11, €11,8, €8,3; €3,1, 61,6}

Ly = {66,11, €11,5,€5,1, 61,6}

Ly = {66,11a €11,105 €10,7, €7,2y €2,1, 61,6}

Le = {66,11, €11,12, €12,9, €9,4, €4,1, 61,6} J
K1s

Figure 47: Interconnection graph of the mixer unit

The loops have been drawed into the scheme of the mixing unit in Fig. 48. The
corresponding kinematical network with solution flow is shown in Fig. 49. The
program determines as inputs for the system the joint variables 64, 63 and B1, which
do not coincide with the pilot inputs. This is because, by this particular choice, the
algorithm can guarantee a closed-form solution for the complete kinematics, whereas
by the selection of the pilot inputs, only an iterative solution is possible. The closed-
form solution is based on a recursive processing of the loops of the system, starting
with the computation of §; and &5 in L, then resolving loops Ly and L4 for é; and sy,
and with these evaluating the kinematics of L3, Ls and Lg. As each loop is solvable
in closed form, the complete process also renders analytical solutions. With this
resolution scheme, the complete relative kinematics becomes recursively solvable,
and corresponding expressions for velocities and accelerations can be generated.
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Figure 48: Loops of the mixer unit
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Figure 49: Kinematical network of the mixer unit
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For the generation of the absolute kinematics, the topological structure-processing
scheme described in Section 10 is carried out. The corresponding system matrices

R,, C,, R, and C. become:




Task Topology | Position | Velocity | Acceler. Total
determination of clusters 6.84 s 6.84 s
loop detection 202.15 s 202.15 s
kinematical networks 12.50 s 12.50 s -
loop 1 142.28 s | 63.85 s 577s | 211.90 s
loop 2 140.26 s 5.06 s 3.17s | 148.49 s
loop 3 2091 s | 11.68s 3.20 s 35.79 s
loop 4 27.84 s 9.53 s 2.75 s 40.12 s
loop 5 85.89 s | 44.29s 440 s | 134.58 s
loop 6 93.69s| 46.69s 443 s | 144.81 s
equation reorderring 416.99 s
SOLVAS-matrices 0.73 s 0.73 s
absolute kinematics 0.15s| 63.69s| 4656s | 21.60s | 132.00s
total 222.37 | 574.56 | 227.66 45.32 | 1486.90 s

Table 11: CPU-time for generation of symbolical equation for the mixer unit

-’CZ }C3 IC4 ICS K:G }C7 ICS ICQ ,Cll ICIO IClZ IClB IC14 ICIS ,C16 -

0001—-1000-1020 00 0 0 |es
1000-1100-1-1020 00 0 | eno
R _|0100-1010-1020 000 0 |en
001 0-100T1-=10-1010 0 0 |eg
0000000 0=10-11=120 1 |egu
(00000000 -1-10 1 0 -1 1 [emus

With the knowledge of shortest-path matrix R,, the absolute kinematics amounts to
superposing the relative motions along the paths according to the equations for serial
chains derived in Section 2.3. With these equations, the kinematical processing is

terminated.

The complete kinematical processing described above took about 25 min. on a
workstation of type HP 9000/720. Table 11 displays an overview of the distribution
of computational time to the individual steps. During this process, a total of 1437
symbolical expressions were generated, which are roughly divided equally between
relative and absolute kinematics (Table 12). The number of operations involved in
these expressions is reproduced in Table 13.

A complete listing of all expressions, including the user inputs, is provided in Ap-
pendix A.
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relative kinematics

equations for joint coordinates and their derivatives ....108

SubstItUtions . ...t 692
absolute kinematics

equations for the kinematical state of all bodies ........ 360

SUbSEIEULIONS .« o\ttt 277
total ... 1437

Table 12: Number of symbolical equations for the mixer unit

Type Number
Addition and subtraction 3551
Multiplication and division 4879
Power 61
Square root 5
Trigonometric functions 33
Inverse trigonometric functions 29
Total 8558

Table 13: Total number of operations for the mixer unit
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12 Conclusions

The methods described in this report show that it is feasible to design automated
procedures that produce closed-form solutions of the kinematics for multiple-loop
mechanisms at position, velocity and acceleration level. The generation of such so-
lutions is made possible by analysing the topology and the geometry of the system
at hand, performing a successive dissection of the system, first in clusters of recur-
sively solvable and non-recursively solvable subsystems, then in sets of independent
loops, and finally in sequences of transformations which leave certain geometric ele-
ments invariant. By representing the global system of equations as a concatenation
of such simpler subsystems, the subsequent re-assembly of the local solutions poses
no problem, and an integrated program can be written that carries out all of these
steps in a completely autonomous manner. The report describes such a program,
called SYMKIN, showing also that the aforementioned optimized solutions can in
fact be achieved in acceptable processing time for a number of rather complex spa-
tial systems. Such optimized solutions may serve as a practicable means to design
programs suited for real-time simulation of complex vehicle dynamics in the near
future.
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13 List of Project-Related Publications and In-
terim Reports

During the period of the present project, the following related publications ap-
peared: '

— Th. Krupp, A. Kecskemethy and R. Wehage. (1994) Precomputed
Loop-based Kinematics and Dynamics in Large Scale Vehicle Models. In Halin,
J., Karplus, W. and Rimane,R. (eds.) Proceedings of the First Joint Confer-

ence of International Simulation Societies, CISS, Zirich.

— 1st Interim Report: Decomposition of Multiloop Mechanisms Into Recursively
and Non-Recursively Solvable Subsystems. (27.9.1994).

~ 2nd Interim Report: Automatic Generation of Closed-Form Solutions of
Multiple-Loop Mechanisms and Symbolic Velocity Processing for a Single
Loop. (23.12.94).

~ 3rd Interim Report: Automatic Generation of Closed-Form Solutions and
Topological Analysis of Multiple-Loop Mechanisms. (28.03.95).
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A Closed Form Solutions for the Mixer Unit

ADH7[1, 4] -> d Sin[betal12]}

delta[5] => ArcTan[Sgrt[~1 + ---=-=-----sssas- 1] + ArcTan[et, 0]

(g - ADK7[L, 4D
ADNS(3, 41 -> -(f Sinl[deltal4]])
ADH4[3, 4] -> h3 + h4 + ADHS{3, 4]
ADN5[2, 4] -> -(f Cos[deltal4]])
ADH3[2, 4] -> ADHS[2, 4] Cos(deltal3]] + ADH4[3, 4] Sin[delta[3]]
ADR{L[1, 4} -> ~(cl Cosldelra(5]])
ADHL1[3, 4] -> ci Sin(delta[5]]
ADH2(2, 4] -> -h2 + ADM3(2, 4]
ADH3[2, 2] -> Cos[delta[3]] Cosldelta[4]] + Sin[delta{3]] Sin{delta{4]]}
ADH3[2, 3] -> Cos[delta{4]] Sinl[delta{3]] - Cos[delta[3]] Sinldeltal4}]
ADH3[3, 2] -> -(Cos{delta[4]] Sinldeltal[3]1]) + Cos{delta[3]] Sin[delta[4]]
ADH3([3, 3] -> Cos[deltal3]) Cos{delta[4]} + Sin[delta[3]] Sinl[delta(4]]
ADH3[3, 4] -> ADH4[3, 4) Cos[deltal[3]] - ADH5[2, 4] Sin{delta{3]]
ADHIO[1, 41 -> g + ADHi1lt, 4]
ADH10[2, 4] -> ADN2(2, 4] + c2 ADH3[2, 2] + ADHI1[3, 4] ADH3(2, 3]
ADH10[3, 4] -> c2 ADH3[3, 2] + ADHi1[3, 4] ADH3[3, 3] + ADH3[3, 4]

2 2 2
ADHI2[1, 1] -> ADHiO[1, 4) + ADHiO[2, 4] + ADHIO[3, 4
ADH7[3, 4] -> 4 Cos[beta[12]]
3
ADHE(1, 1] => b2
2 2
ADHS[1, 1] -> ADHT[1, 4] + ADHT(3, 4]
~ADH12{1, 1] + ADHS[L, 11 + ADHS[f, 1]
beta[t1] -> ~ArcSin[ )]
2 b2 ADHT[3, 4]

ADH14[2, 4] -> -(ADN7(3, 4] Sin[betaf111])
ADHL3[2, 4] -> -b2 + ADH14[2, 4}
ADH14[3, 4} -> ADHT[3, 4] Cos[betali1]]
delta[2] -> -ArcTan[(ADH1O[2, 4] ADHi3([2, 4] + ADHIO[3, 4] ADH14[3, 4]) /

2 2

> (ADHiO[2, 41 + ADH{iO(3, 41 ),

> (-(ADK10[3, 4) ADHi3[2, 4]) + ADH10[2, 4] ADH14{3, 41} /
2 2

> (ADH10{2, 4] + ADH1O[3, 4] )]

ADHIB[3, 2] ->
>  ~(Cosl[delta{2]] Sin(betaft1]1) - Cos[beta[ii]] Sinldelta{2]]
ADHIB[3, 3] -> Cos[beta[11]] Cos[delta[2]1] - Sin[betafil]} Sin[deltal2}]
ADHI7[1, 2] -> ~(ADH18[3, 2] Sin[betali2]])
ADH{7{{, 3] -> -(ADH18[3, 3] Sin[betali2]])
ADH1B[2, 2] -> Cosfbeta{i1]] Cosfdeltal[2]] - Sin[betali1]) Sinl[delta(2]]
ADH18[2, 3} -> Cos{dalta(2]] Sin{betali1]] + Cosl[betal{1]] Sin[delta(2]]
ADHES[1, 13 ->
> Cos[beta[i2]] Cosldelta[§]] -
> (ADHI7[1, 2] ADH3[2, 3] + ADHA7T{1, 3] ADH3[3, 3]) Sin(deltals]]
ADHIS[2, 1] =>
>  ~((ADH18(2, 2] ADH3[2, 3] + ADH18[2, 31 ADH3[3, 3]) Sin[deltafS1])
ADHIS[2, 1}
phi[i8] => -3.14159 - ArcTan{-- -=1
ADHISEL, 1]
ADH17{3, 2] -> ADH{8[3, 2] Cos[betaf12}]
ADH17(3, 3] -> ADH18[3, 3]} Cos[betalt2}]
ADHIS[3, 1] ->
>  Cos[delta(5]) Sin[beta[12]] -
> (ADHI7[3, 2] ADH3[2, 3} + ADRI7[3, 3} ADH3[3, 31) Sin[deltal5]]
ADH21[t, 11 -> ADHIS[L, 1) Cos[phi(18)] - ADH15{2, 1] Sin[phi[18]}
ADR21 (1, 11
phift7] -> ArcTan[--r===-=-=re-=omcmcmmososes ’

v v v v

ADH1S[3, 1] + ADH21{1, 1]
ADHIS[3, 1]
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ADHIS[3, t] + ADH2M[{, 1
ADHLS[{, 2] -> ADHi7[i, 2] ADH3[2, 2] + ADHL7{1, 3] ADN3[3, 2]
ADHiS(2, 2] -> ADHi8([2, 2] ADH3[2, 2) + ADHi&[2, 3] ADH3(3, 3]
ADHIS[3, 2] -> ADHIT[3, 2] ADH3[2, 2] + ADHL7[3, 3] ADH3{3, 2]
ADH23[3, 1} -> -(Cos[phi[18)] Sin{phif171])
ADN23(3, 2] -> Sin(phif17)] Sinl[phifte}]
ADH22[2, 2] -> ADHiS[2, 2] Cos{phi[t81] + ADNIS{{, 2] Sinfphi[18]]
ADH22(3, 2] ->
>  ADMIS[1, 2] ADH23[3, 1] + ADHI5[2, 2] ADH23(3, 2] +
> ADH1S[3, 2] Cos[phi{i7]]
phi{16) => -ArcTan[ADH22[2, 2], ADM22[3, 211
ADH37[3, 4] -> -(b2 Sin[beta[11]])
ADH36[3, 4] -> ADH37(3, 4] Cos[beta[12]]
ADH29{2, 4] -> (-h3 - h4) Sin[delta(4]]
ADH29{3, 4] -> (-h3 ~ h4) Cos[delta[4]]
ADH3S[3, 4] -> -4 + ADH36[3, 4]
ADH36[1, 4] -> -(ADH37(3, 4] Sin[beta[12]])
ADH37{2, 4] -> b2 Cos[beta[it}}
ADH23[1, 1) -> Cos[phi{17]1] Cos{phi{i&l]
ADH2S(2, 4] -> =c2 + f
ADH2E[1, 4] -> cl - ADN29[3, 4] Sin[delta[5]]
ADH28[2, 4] -> =c2 + f + ADH29([2, 4]
ADH28[3, 4] -> ADH2S([3, 4] Cos[deltaf5]]
ADH31[1, 4] -> -(d Sin[phi[171])
ADH31{2, 4] -> d Cos[phi[i7]] Sinfphi{16]]
ADH3{{3, 4] => -(d Cos[phi{i6]] Cos{phi[171]}
ADH32[L, 41 -> ~(d Sin{phi(171D)
ADH32[2, 4] -> d Coaz[phil171] Sin(phil16]}
ADH32[3, -(d Cosl[phi[161) Cos[phi[17]1])
ADH34[2, 4] =>
> -(ADH3S5[3, 4] Cos[phi{1711 Sin{phi{16]1]) +
5> ADM37[2, 4] (Coslphil16]1 Cos{phi[i8]1] - ADN23{3, 2] Sinfphil16]]) +
> ADH36[1, 4] (~(ADM23[3, {] Sin[phi[161}) * Cos[phi[i6]) Sin[phi{t8]]}
ADH34([3, 4] ->
>  ADH35(3, 41 Cos[phi({6]] Cos[phil{7]] *
> ADH3T[2, 4] (ADH23[3, 2} Cos(phi[16]]1 + Cos{phi[12]] Sin[phi[161}) ¢
> ADH36(1, 4] (ADH23[3, {] Coslphi{16]] + Sin{phi{16]] Sinlphil[18]1])
ADH23[1, 2] -> -(Cos[phi[i7]1] Sin{phi[181])
ADH34[t, 4] ->
> ADH23{f, 1} ADH36{1, 4] + ADH23[i, 2] ADH37[2, 41 +
> ADH35(3, 4] Sin(phi[17]]
ADH30[2, 3] -> -(Cos[phil17]] Sin[phi(i611)
ADH30[3, 3] -> Cos{phi[16]] Cosfphi{i7]]
ADH31{2, 2] -> Cos[phi[16]1] Cos[phi{i8]] - ADH23(3, 2] Sin[phi(16]
ADH31{3, 2} -> ADH23[3, 2] Cos[phi{161] + Cos(phi(18]] Sin[phil16]
ADH32{1, 1] -> ADH23[f, 1] Cos[beta[12]]1 + Sin[beta(12]] Sin{phil17]]
ADH32(2, 11 ->
>  -(Cos[phi[17]] Sinlbera[f2]] Sin{phi{i6]]) +
> Cosfbata[12]} (-(ADH23{3, ] Sinlphi[16]]) +
> Cos[phi{16}] Sinlphi[18]))
ADR32[3, ] =>
>  Cosfphi[16)) Coslphili7]] Sinfberal12]] +
>  Cos[betal[12]] (ADH23[3, 1] Coslphil{6]1 + Sinlphi{16]] Sinlphil121])
ADH34[1, {] -> ADH23[t, (] Cos[beta[t2]1] + Sin[betal12]] Sin[phili7]
ADH34[2, L] ->
> -(Cosfphil17]) Sin[beta{i2]] Sin[phil16]1) +
>  Cosfbeta[t2]] (-(ADH23[3, 1} Sin[phi[16]1]) +
> Coslphil16)] Sinfphil181})
ADH34([3, 1] ->
> Cos[phil16]) Cosfphi(t7}] Sinlbeta(t2]] +
>  Cos{beta[12]] (ADH23[3, 1] Cos[phil16}] + Sin(phi{16]1] Sinlphif18]1])
JACR2(4] -> ADH25{2, 4) Sin(delta{5]]
JACR2{5] -> =(ct Sin(deltalSI])
JACR2{6] -> -(ADH25{2, 4] Cos[delta{S]1])
JACR3{4] -> ADH28[2, 4] Sinfdelta[5]]
JACR3{5] -> ADH28[3, 4] Cos{deltalS}]} - ADH2a[f, 4] Sin[delta[5]]
JACR3[6]1 -> -(ADH28[2, 4] Cosldeltal5]))
JACR7({4] -> ADH31[2, 4] ADH3{[3, 2] - ADH3{[2, 2) ADHM31{23, 4]

2
'
M

v

v v v v




JACRT[S] ~> -(ADM3L[1, 4] ADH31[3, 2]) + ADH33[1, 2] ADH31[3, 4]
JACR?[6] -> ADN3L[i, 4] ADH3{[2, 2] - ADH23([t, 2] ADH3i[2, 4]
JACRS[4] > ADN32{2, 4] ADH32(3, 1] - ADH32[2, 1} ADH32(3, 4]
JACRE[S] -> -(ADH32[1, 4] ADH32{3, 1]) « ADH32{{, L] ADR32(3, 4]
JACR8{6] -> ADH32{{, 4] ADH33[2, 1] - ADH32({, 1] ADH32[2, 4]
JACRO[4] -> ADH34{2, 4] ADH34{3, 1] - ADH34[2, 1] ADH34(3, 4]

JACRYIS] -> ~(ADH34[1, 4] ADH34[3, 11) + ADH34{1, 1] ADH34[3, 4]
JACR9[6) => ADH34[1, 4) ADH34[2, 1) - ADH34[1, 1) ADH34[2, 4]

(beta[11])? =>

> (-(JACR7 (5] IJACR9[4) (beta[12])*) + JACR7T[4] JACRO{S] (beta[f2])’ -
> JACR3[S) JACR9[4] (delta[3])’ + JACR3[4] JACRO[S] (delta(3])’ +

> JACR2{5) JACRS[4) (delta[4))' - JACR2[4] JACRS[5] (deltal4])’) /
> (JACRB{S] JACRS[4] - JACR8{4] JACRO{S])

(deltaf2])* ->

> =((JACRE[4] (betali1])’> + JACRT[4] (beta(t2])’ +

> JACR3[4] (delta[3])* - JACR2[4] (delta[4])’) / JACR9[4))
(delta[s])’ ->

> (IACRB[6] (batafi1])? + JACRT[6] (betali2])' + JACRO[6) (delta[2])’ +
> JACR3[6) (delta[3])' = JACR2{6] (deltal4])’) / ci

(phif17])? => (ADH30[3, 3] ADH32[2, 1] (betalft])’ -

> ADH30([2, 3] ADH32[3, 1] (betaliil)’ +
> ADK30([3, 3) ADH31[2, 2] (baeta[i2])’
> ADH30([2, 3] ADM3L[3, 2] (betali2])’
> ADH30[3, 3] ADH34[2, 1] (delta[2])’ -
>
>
>
>

v

+

ADH30[2, 3] ADH34[3, 1] (deltal2])’ -
ADH30(2, 3] Sin[deltaf5]] (delta[3])’ +
ADH30[2, 3] Sin[deltal51] (delta[4])® - ADH30{3, 3] (deltalSD)*) /
(ADH30[3, 3] Cos[phi[16]11 - ADN30[2, 3] Sin[phi(161])
(phi[18])* -> (ADH32[2, 1] (beta[f1])> + ADH31[2, 2] (betal12])’ +
> ADH34[2, (] (delta[2])’ - (delta(5]1)’ - Cos[phili6]1 (phi{17]>*) /
> ADH3O[2, 3)
(phif16])* -> ADH32[1, 1] (beta[11))’ + ADH23{{, 2} (beta[i2])’ +
> ADH34[1, 1] (delta[2])’ + Cosldelta[5]] (delta[3])’ -
> Coafdelta[5]) (deltal4])* - Sin[phi[17]] (phil18])*
JACRLO[4] -> JACR3[6] (delta[3])’ - JACR2(6] (deltal4])* ~ ci (delta[5]}’
JACRL0[6) -> -(JACR3{4} (delta[3])’) + JACR2[4] (deltaf4])®
JACRL1[1] -> ~(Sin[delta(5]] (delta[S])’)
JACRIL[3]) -> Cos[deltaf5]] (delta(5])’
JACRL1[4) -> ~(JACR3[S] Sin(delta[S]] (delta(3])?) +
> JACR2[S] Sin[deltaf{5]] (delta(4])’ - JACR2[6] (delta[5])’
JACR11[5] -> (-(Cos{delta[S]] JACR3[6)) + JACR3{4) Sin{delta(5]})
> (delta[3])* - (-(Cos[dalta[51] JACR2(6]) + JACR2{4] Sinldelta(S1])
> (deltaf4])’
JACR11[6] -> Cos[delta{S]] JACR3[S] (deltal3])’ -
>  Cos[delta[5]) JACR2[5] (delta[4])* + JACR2[4] (deltafS])®
JACR12{1] -> -(Sin[deltal[§]] (deltalS])*)
JACR13[3) -> Cos[deltal5]] (delta(S])®
JACRI2[4]) ~> -(JACR3[5] Sinl[delta(5]) (deltaf3])?) +
> JACR3[S] Sinl[delta{51]1 (delta[4])’ - JACR3[6] (delta[5])’
JACRI2[5] -> (~(Cos[delta(511 JACR3[6]) + JACR3({4] Sin(delta[5]1)>
> (deltaf3])* - (-(Coal[delta{S]] JACR3[6]) + JACR3[4] Sin{deltal5}])
> (delta[4])?
JACRL2{6]) -> Cosl[deltal[S}) JACR3[S] (deltal3])’ -
>  Cos[delta[5]) JACR3[5) (delta{4])’ + IJACR3[4] (delta[S])®
JACR14[5] -> JACREI6] (betal[l1])’ + JACR7[6] (beta[12])’ «
> JACRS[6] (deltaf2])’
JACR14[6) -> -(JACRE{S] (beta(11])?) - JACRT(5] (beraft2])’ -
> JACRS[S] (deltaf2))®
JACRIS[2] -> -(Sin{phi[161] (phi[161)*)
JACRIS([3) -> Coslphif16]] (phi{161}’
JACRL5[4) ~> -((Cos[pnifi6]] JACRE[6]1 - JACRBIS] Sinlphilt6]])
> (beta[11])°) ~ (Coz[phi[16]] JACRT[6] - JACRT[S] Sin{phili6]1)
> (beta{12])* ~ (Cos[phil16]] JACRO[6] - JACRS(S] Sin[phi{16]1)
> (deltaf2))*
JACRIS[5] -> -~(JACR8[4] Sinlphili6]] (betaft1]d’) -
5> JACR7[4] Sin{phi[161] (beta[12])? ~ JACRS[4] Sin{phi[16]] (delta{2])’
JACRIS[6] -> Cos[phi[16]]1 JACRE[4] (betalit])’ +
>  Cos[phi[161] JACRT[4] (beta[i2])’ + Cos[phi{16]] JACR9[4] (delta[2])
JACRL6[1] -> (ADH30(3, 3] Cos[phil16]} - ADM30[2, 3] Sin[phi[16]1)
> philtT])
JACRI6[2] -> -(ADH3O[3, 3} (phili61)*) +
> Sinlphil16]] Sin{phil171] (phi[17])’
JACRI6[3] -> ADH30[2, 3] (phi[16])* - Cos[phil[16]) Sin{phil171} (phi(171)’
JACR16[4) -> —((-(ADH30[3, 3] JACRB[S]) + ADH30[2, 3] JACRB[6])
> (betal111)*) - (~(ADH3O[3, 3] JACR7[S]) + ADH30[2, 3] JACR7[6D)
> (beta{12])* - (~(ADH30[3, 3] JACRS[S]) + ADH30{2, 3] JACR9{6])
> (deltal2])’
JACRL6[5] -> -((ADH30[3, 3] JACRS([4] - JACRE[6] Sin[phili7]])

> (beta{i11)?) - (ADH30[3, 3] JACR7[4] - JACR7{6] Sin[phi[171])

> (beta[12])* - (ADH30[3, 3] JACRI(4] - JACR9[6] Sin[phil171])

> (deltaf2])’

JACRL6[6] -> -((-(ADH30[2, 31 JACRS[4]) + JACRE[S] Sin([phi{17]])

> (betal111)?) - (~(ADM30[2, 3] JACRT[4]) + IACR7[S) Sin[phil171])
> (beta[12])* - (-(ADH30[2, 3] JACR9{4)) + JACRO(5] Sin[phi[i7]1}

> (deltal2])?

JACRITEL] -> (ADH3L[3, 2) Cos[phi[16]] - ADH31[2, 2] Sin[phi[16]1))
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> (phifi7])> + (-(ADH30[3, 3] ADH31[2, 3]) + ADH30[2, 3] ADH3i[3, 21}
> {(phi[18])’

JACRLT(2) -> -(ADH3L(3, 2] (philie])?)

> ADH23[1, 2] Sin(phi[t6)1 (phil17])* +

> (ADH33[t, 2] ADH30[3, 3] - ADH3L(3, 2] Sin(phi[17]]) (phi[18])*
JACRLT{3) -> ADH31{2, 2} (phi[16])’ -

> ADH23[1, 2] Cos{phil16]) (phil{T])* +

> (-(ADN23[L, 2] ADH30[2, 3}) + ADH31(2, 2} Sin{phi[1711) (phil18])’
JACRIT[4] ~> ~((-(ADH31[3, 2] JACRS[S]) + ADH3L[2, 2] JACRE{6])

> (botalt1])") - (-(ADH31[3, 2] JACRT[S]) + ADH3L[2, 2] JACRT(6])
> (beta[12])* = (~(ADH31{3, 2] JACRS[5)) « ADH31{2, 3} JACRS[6])

> (delta[3])® + (Cos[phi{161] JACRT{6] - JACR7[S] Sin[phil161))

> (phil17))" + (-(ADH30[3, 3] JACRT[S]) + ADH30[2, 3] JACRT[6])

> (phif1e1)?

JACRITES] -> -(CADR31[3, 2] JACRS[4] - ADH23[1, 2] JACRs(6D)

> (bataft1])?) - (ADH3((3, 2] JACRT{4] - ADH23[1, 2) JACR7[6D)

> (bata[12])> - (ADH31[3, 2] JACRS[4] - ADH23[f, 2] JACRS(6]

> (deltal2])® - JACR?[6] (phil18])? «

> JACRTI4) Sinlphil16]} (phi[17])? +

> (ADH30[3, 3] JACR7{4} - JACR7I6) Sinl[phil171]) (phifte])®
JACRITI6] -> - ((-(ADH31[2, 2] JACRS[4]) « ADH23([t, 2] JACRS[S))

> (betalf1]}*) ~ (~(ADH3L[2, 2} JACRY[4]) + ADH23[1, 2] JACR?(S))
> (betall2]))* - (~(ADH31[2, 2] JACRO{4]) + ADH23[1, 2] JACRS[S])

> (deltaf2])’ + JACRTIS] (phi[161) -

> Cos[phil[16]} JACRT[4) (phil17])® +

> (-(ADM30(2, 3] JACRT{4]) + JACRT[5] Sinlphi[171]) (phi[18))*
JACRIB[1) ~> -((-(ADH3£[3, 2] ADH32[2, {}) + ADH31[2, 2] ADH32{3, {])

> (betal12))°) + (ADH32[3, {] Cos[phi{16]] -

> ADH32{2, 1] Sin[philt6]]) (Phil17TD)* +

> (-(ADH30{3, 3] ADH32[2, 1]) + ADH30[2, 3] ADH32[3, 1)) (phili8})’
JACR18[2] -> -((ADM31(3, 2] ADH32(t, 1] - ADH23[1, 2} ADH32{3, 1D}

> (beta{12])°) - ADH32(3, L) (phil16])* +

> ADH33[f, t] Sin(philt6)] (phil171)* +

> (ADH30[3, 3) ADH32[{, 1) - ADH32(3, 1} Sin{phi[t7}]) (phili8])®
JACRIB[3] -> -((-(ADM3L[2, 2] ADW32{L, {]) + ADH23[1, 2] ADH32[2, 1])

> (bataf12))?) + ADH32[2, t] (phi[t6])* -

> ADH32[t, 1] Cos[phil161} (phil17])* +

> (-(ADH30{2, 3] ADH32[L, 11) + ADH323[2, (] Sinlphi{{7]]) (phi[18])*
JACR1B{4] -> -((~(ADH32(3, () JACRE[5]1) + ADH32{2, 1] JACRS[6])

> (beta[111)?) - (-CABH3L[3, 2] JACRS[S]) « ADH31[2, 2} JACRs(6])
> (betal[t2])’ - (-(ADH32{3, 1] JACRS[5)) + ADH32(2, {] JACRS{6])

> (deltaf2])* + (Cos[phili6]] JACRS{6] - JACRE(S] Sin[phi[161))

> (phi[171)* + (-(ADH30{3, 3] JACR8(5)) + ADH30[2, 3] JACRS[6])

> (phil18])’

JACRIB{5] -> ~((ADHM32(3, 1] JACRB[4] - ADW32[t, 1] JACRS[6])

> (beta[11])?) - (ADH31[3, 2] JACRS[4] - ADH23[f, 2] JACRS([6]}

> (betal12])* ~ (ADH32[3, 1] JACRS{4] - ADH32{{, 1} JACRS[6])

> (delta[2])* - JACRE[6] (phi{is))? +

> JACRB[4} Sinl[phi{l6}] (phil17])>* +

> (ADN30([3, 3] JACRS{4) - JACRE(6) Sin[phi[17]]) (phi[6])’
JACRIB[6] -> -((-(ADH32(2, 1] JACRE(41) + ADH32[{, 1) JACRS(SD)

> (betal£11)*) - (-(ADN31[2, 2) JACRS[4]) + ADW23[L, 2} JACRS(S])
> (betal121)* - (~(ADH32{2, {] JACRS(41) + ADH32{1, 1] JACRS(S])

> (deltal21)® + JACRE[S] (phi[16)) -

> Coslphilt6]] JACRE[4] (phil171)* ¢

> (~(ADH30[2, 3) JACR2(4])) + JACRE[S] Sinlphil171D) (phi{18})’
JACR1S[1} -> -((-(ADN32{3, 1] ADH34{2, {]) + ADH32(2, 1} ADH34[3, (1)

> (betal1£])*) - (-(ADN3L(3, 2] ADH34[3, 1D) +

> ADH31[2, 2] ADH34{3, (1) (beta[12])® +

> (ADH34[3, 1} Cos(phil161] - ADH34[2, t] Sin[phi[16])) (phi[17])* +
> (-(ADR30{3, 3] ADH34[2, t]) + ADH30[2, 3] ADH34(3, 11) (philis])®
JACRIS[2] -> -((ADH32{3, 1] ADH34[1, f] - ADW32[{, 1) ADH34(3, 1]}

> (beta[11]1)*) - (ADH3L{3, 2] ADH34{1, 1) -

> ADH23[4, 2] ADH34{3, 1]} (beta[12])* - ADH34[3, 1] (phif(6])’ +
> ADH34[1, 1] Sin(phil[16]] (phi[17])) +

> (ADH30{3, 3] ADH34{1, 1} - ADH34[3, 1] Sinlphili71]) (philis])’
JACRIS{3] -> -((-(ADN32{2, 1} ADM34[{, L)) + ADH32(1, {) ADH34[2, t1)

> (betal{11)7) - (-(ADH31[2, 2} ADH3A[1, 1]) +

> ADR23[1, 2] ADH34[2, 1) (beta(42])? + ADH34[2, 1) (phi[16])’ -
> ADH34[1, {] Cos(philt6]] (phil17])> +

> (-(ADN30[2, 3] ADM34(f, {}) + ADH34[2, 1} Sin{phi(17)]) (phi[i8]))’
JACRIST4] -> -((-(ADH32(3, {] JACRSISD) + ADH32(2, 1) IACRS[S])

> (beta{i1})?) ~ (~(ADH31{3, 2] JACRS{S]) + ADH3L[2, 2] JACR9(6])
> (beta[12])? - (-(ADH34[3, (] JACRO[S]) + ADH34[2, 1] JACR9[6])

> {delta[2])? + (Cos{phil16]] JACRS[6) - JACR(S] Sin[phil16]])

> (phi[17])" + (-(ADH3O[3, 3} JACRS[5]) + ADH30{2, 3] IACRS[6])

> (phif1€))*

JACRIQ[S] -> -((ADH32[3, 1] JACR9{4] - ADH32[t, 1] JACR9(6])

> (bata[11])’) - (ADH31([3, 2] JACR9{4) - ADH23[1, 2} JACRS[6])

> (beta[12])> ~ (ADH34[3, ) JACRS{4] - ADH34[f, 1] JACRS[6])

> (deltaf21)? - JACRS[6] (phili6}) +

> JACRO(4] Sin[phi[16]) (phi(t7])> +

> (ADH3013, 3] JACRO[4] - JACRS[6] Sin{phi(i7]]) (phili8])®
JACRIS[6) -> ~((-(ADH32[2, t) JACRO[4]) + ADH32[(, 1] JACRS[S])

> (beta[11])) ~ (-(ADH3L[2, 2] JACR9[4]) + ADH23[t, 2] JACRS[S})
> (beta[12])* ~ (-(ADH34([2, {] JACRO[4]) + ADH34{1, 1} JACRS(S])




> (delta[2])* + JACRO[S] (phil[16])® -
> Cos[phil161] JACRS{4) (phil[17])’ +
> (~(ADH30[2, 3] JACRS[4]) + JACRS[S] Sin{phif171]) (phili8])’
JACR13[1] -> JACRI2[1) (delta{3])’ - JACRLL[L] (deltaf4])’
JACR(3(3] -> JACR12[3] (delta[31)’ - JACR{{(3] (delta[4])’
JACRE3[4] ~> JACR12[4] (delta[3])’ - JACRI1[4] (deltal4])’ -
> JACR{0{4] (deltalSD)'
JACR13{S] -> JACR12[S] (delta{3])’ - JACR{L[5] (delta[41)®
JACRL3[6] ~> JACR12(6] (deltal3])’ - JACR{1[6] (deltal4))’ -
> JACR{0[6] (deltalS])*
JACR20(1) -> ~(JACRIB[1] (beta(11))*) - JACRI7[1] (beta[12])® -
> JACRIS[{] (delta[2])’ + JACRI6{i] (phi[18])’
JACR20[2] ~> ~(JACRIB[2] (beta[11])?) - JACRIT[2] (beta[12])’ -
> JACR19[2] (delta[2])’ + JACRIS[2] (phil17])’ + JACRL6(2} (phil18])’
JACR20(3] -> -(JACRIBI3] (betal1il])') - JACRI7[3] (beta[12])* -
> JACRIS[3] (delta{2])’ + IACRI5{3) (phi[17])’ + JACRI6[3) (phi[18))®
JACR20[4] -> -(JACR18([4] (beta[11])’) - JACRI7[4] (beta[12])’ -
> JACRIS[4] (deltaf2])’ + JACRIS[4] (philI7])’ + JACRI6[4] (phi(i8])’
JACR20[5) -> -(JACR{B[5] (batal[11})?) - JACRIT[5] (beta[12])’ -
> JACRIS[S] (deltal2])’ + JACRI4[S) (phil16])* +
> IACRIS{S] (phi(171)* + JACRi6{S) (phi[18])
JACR20{6] ~> -(JACRIB[6] (bata[11))’) - JACRIT[6] (beta[12])' -
> JACRIS[6} (deltaf2])’ + JACRI4[6] (phil16])* +
> JACRIS[6] (phi[171) + JACRI6[6] (phi(1e])®
(betafti])** ->
> (~(JACR13[5) JACRO[4]) + JACR20[S) JACR9{4) + JACRI3[4] JACRO[S} -
> JACR20[4] JACRS[S] - JACRT(S] JACRS[4] (bera[12])’’ +
> JACR7[4] JACRSIS] (betalf2])'* - JACR3[5] JACRS[4] (delta[3])"’ +
> JACR3{4) JACRS[S] (delta[3])*® + IACR2{S5] JACRS[4] (delta[4])’’ -
> JACR2[4] JACRS[S) (delta{d])?’) /
> (JACRB[5] JACRS[4] - JACRB[4] JACRS[S])
(deltal2])’? =>
> ~((JACR{3[4] - JACR20[4] + JACRE[4] (beta[l1])’’ «
> JACRT[4] (beta[12])° + JACR3[4] (deltaf3])*’ -
> JACR2({4] (delta[4]1)7?) / JACR9[4)
(delta[S])’? =>
> (JACR13[6] - JACR20[6] + JACRB{6] (betal[i1])*’ +
> JACR7[6] (beta(12])*? + JACRO[6] (delta(2])’’ +
> JACR3[6] (delta[3])? - JACR2(6) (delta(4])*?) / ot
Cphilt7]) 1 =>
> (-(ADH30{2, 3] JACRI3[3]) - ADH30[3, 3] JACR20[2) +
> ADH30[2, 3] JACR20[3] + ADH30[3, 3] ADH32[2, 1] (beta[1i])’’ -
> ADH30[2, 3] ADH32(3, 1] (beta[ti1)®’ +
> ADH30[3, 3] ADH31([2, 2] (betali2])'’ -
> ADH30[2, 3] ADH3{[3, 2] (beta[f2])’’ +
> ADH30[3, 3} ADH34(2, 1] (delta[2])’’ ~
> ADH30{2, 3] ADH34[3, 1] (delta[2])’ -
> ADH30[2, 3] Sin[delta[5]] (delta[31)'’ +
> ADH30[2, 3] Sin[delta{5]] (deltal4])’’ - ADH30[3, 3] (delta(§])’>")\
> / (ADH30[3, 3} Cos[phi[16]] - ADM3O[2, 3] Sin[phil16]D)
(phif18])?* ->
> (-JACR20[2] + ADH32[2, ] (beta{iil)’’ + ADH3{[2, 2] (beta[i21)’’ +
> ADH34[{2, 1] (delta[2])’’ - (delta{S5])’’' - Coslphi{i6]] (phi(i71)*’
> / ADH30(2, 3]
(phili6])1? ->
> JACR13{1] - JACR20[1) + ADH32[{, 1] (bera{ti])’* +
> ADH23(t, 2] (beta[12])?’ + ADH34[i, 1] (delta[2])’* +
>  Cosl[delta[5]] (delta{3])*’ - Cos[deltal[S]] (delta[4])’’ -
> Sinlphi{t7]] (phil1el)’*
ADH39(1, 4] -> ol Cosldelta[51]
ADH3S[1, 4] => -g + ADH39{{, 4]
ApH3e[1, 4]
beta{10} -> Are§in{---------—- ]

ADH3Z9[3, 4] -> -(ct Sinl[delta(5]])
ADH2S[2, 4) -> ADH2(2, 4) + c2 ADH3[2, 2] + ADR3[2, 3] ADH3S[3, 4)
ADH3E[3, 4) -> c2 ADH3[3, 2] + ADH3(3, 4] + ADH3[3, 3] ADH39[3, 4}
ADH41[1, 4) -> 4 Sin[beta{10]]
ADH41[3, 4] -> d Cos[betal{i0]]

2 2 2
ADH3S{1, 4] «+ ADN3E[2, 4] + ADM3B[3, 4]

2 2
ADH4L[t, 4] + ADH41(3, 4]

ADH42[1, 1) - ADH43[1, 1) + ADHE(t, (]
beta[9] -> -AreSin[ ]
2 b2 ADH41{3, 4}

ADH45{2, 4] -> -(ADH41{3, 4] Sin[beta[s]])
ADH44{2, 4] => -b2 + ADK4S(2, 4]
ADH4S{3, 4] -> ADNAL[3, 4] Cos[betals]]
deltaft] -> -ArcTan[(ADH38[2, 4] ADH44[2, 4] + ADH38[3, 4] ADH45[3, 41) /

v

ADH43(t, 1] -

M

ADR4Z2([f, 1] -

2 2

> (ADH3E(2, 43 + ADH38[3, 4] ),

> (-(ADH32{3, 4] ADH44[2, 4]) + ADH3s[2, 4] ADH4S[3, 41> /
2 2

> (ADH38[2, 4] + ADH38(3, 4] )1

ADH49{3, 2] -> ~(Cos[delta[1]] Sin{beta{9}]) - Cos[beta(9]] Sinldeltal{i]}
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ADH49[3, 3] -> Cos[betal9]] Cos[delta[1]] - Sinfbeta[3]] Sin[delta[t]]
ADH48[1, 2] -> -(ADK49(3, 2) Sin[betal10]])
ADH4BI1, 3] -> -(ADH49[3, 3] Sin{betal10]])
ADH43(3, 2] -> Cos[betal9]] Cos[deltal1]] - Sin[beta[s]] Sin{delta[1]]
ADH49(2, 3] -> Cos[deltalf]] Sin[beta[8]1] + Cos[terafs]] Sin[deltall]
ADH46[1, 1] ->
> Cos[beta[10]) Cos[deltaf5]] -
> (ADH3[2, 3) ADH48[t, 2] + ADH3[3, 3] ADH48[{, 31) Sinl[deltal5]]
ADH46[2, 1] ->
> -((ADH3[2, 3] ADH49[2, 2) + ADH3[3, 3] ADH49{2, 3]} Sinideltaf51])
ADH46(2, 1)
phil1S] -> -3.14159 - ArcTanf---------=- 1
ADR4G[1, 1]
ADH48[3, 2} -> ADH49(3, 2] Coslbeta{10]]
ADH48(3, 3] -> ADH49[3, 3] Cos[beta[10]])
ADMAS[3, 1] ->
> Cos{deltalS]] Sin[beta{i0]] -
> (ADH3[2, 3] ADH4S[3, 2] + ADH3(3, 3] ADH4E[3, 31 Sinl[delta[5]]
ADHS3(1, 1] > ADH46{t, 1] Cos[phil[tS]] - ADH46[2, 1] Sin[phift5]
ADHS3(1, 1]
phi[14] =5 ArcTan[---------mscrmreommamcne

ADH46[3, 1] + ADHS3[1, 1]
ADH46{3, 1]

ADR46(3, 1]+ ADHS3[{, 1]
ADH46[f, 2] -> ADH3[2, 2] ADM48(1, 2] + ADH3[3, 2] ADH48[{, 3]
ADH46(2, 2] -> ADH3[2, 2] ADH49[2, 2] + ADH3[3, 2] ADK49[2, 3]
ADH46(3, 2] -> ADH3([2, 2] ADH4B[3, 2] + ADH3(3, 2] ADH48(3, 3]
ADHSS{3, 1] -> -(Cos[phil15]] Sin[philf4]])
ADHSS([3, 2] -> Sin[phi[14]] Sinf{phi[i5]]
ADHS4({2, 2] -> ADH46[2, 2] Cos[phil15]]  ADH46[t, 2} Sin[phi{15]]
ADHS4{3, 2] ~>
> ADH46[1, 2] ADHSS[3, (] + ADH46[2, 2] ADH55{3, 2] +
> ADH46[3, 2] Cos[phi[14]}
phi(13) => ~ArcTan{ADHS5412, 2], ADHS4[3, 211
ADH72[2, 4) -> -(b2 Cosldeltal1]])
ADHT2[3, 4) -> ~(b2 Sin[deltaltl])
ADH67(2, 4] => h2 Cos[delta[3]]
ADR67[3, 4] -> h2 Sin[delta[3]]
ADH7L[2, 4] ->
> k2 Cos[delta(3]] + ADH72[2, 4} Cosfdelta(3]] -
> ADH72(3, 4] Sinfdelta(31]
ADHTI[3, 4] =>
> ADH72(3, 4] Cos[deltaf3]] + h2 Sin[delta[3]] +
> ADH72{2, 4} Sinldelta[3]]
ADHS9[2, 4] -> -(c2 Cos[phi[43}])
ADHSST3, 4] -> <2 Sin[phi[13]]
ADH63[1, 4] -> -(ADH29(3, 4] Sin[delta[5]])
ADH63[2, 4) => ADH29(3, 4] Cos[deltal5]]
ADH6412, 4] -> f + ADH29[2, 4]
ADHES(L, 4] ->
> g Cos{deltal5]] - ADH29([3, 4] Sinfdelta{5]) -
> ADH67[3, 4] Cos[delta[4]] Sinldeltals]]
> ADH6T(2, 4] Sinldeltal4)) Sinldelta(S}1
ADHE6(3, 4] =>
> ADH29[3, 4] Cos[delta[5]) + ADH67[2, 4] Cos[delta[4]] Cos[delta(5]] -
> ADH67[2, 4] Cosldelta[$51] Sinfdelta[4]] + g Sin{delta[5]}
ADR7O[1, 4} ->
> g Cosfdeltal5}1 - ADH29[3, 4] Sinl[delta[S]) -
> ADHTL[3, 4] Cos[delta[4]] Sin[deltalS}] +
> ADHTi[2, 4} Sinldeltal[4]] Sin[deltalS]
ADHTO[3, 4] ->
> ADH28{3, 4] Cos{deltalS]} + ADH71[3, 4] Cos{delta[4]) Cos[delta[S]] -
> ADHTL[2, 4] Cos[delta[5]] Sinl[deltai4]] + g Sin[delta[$]
ADH58{1, 4] -> -(ct Cos[phi[14]1) - ADHSS9[3, 41 Sin[philt4]}
ApHes(2, 4] ->
> ADH64[2, 4] + ADH67(2, 4] Cos[delta[4]) + ADHS7(3, 4] Sin{deltaf4]]
ADHTO[2, 4] ->
> ADH64[2, 4] * ADH71[2, 4] Cos[delta{4]] + ADH7I[3, 4] Sinldelta{4]]
ADHS7[{, 41 -> ADNSS[1, 4} Cosl(phil15]) + ADHS9[2, 4} Sin[phi[15])
ADH57(2, 4] -> ADHS9[2, 4] Cosl(phili5]) - ADHSE(f, 4] Sin[phi[{5])
ADHSB[1, 2] -> Sin[phif13]] Sinl(philia]]
ADHS8(1, 3] -> =(Cos{phi[13)] Sinfphil1411)
ADHSB[3, 3] -> Cos[phifi3)] Cosfphi[14]]
ADHSE[3, 4] -> ADH53{3, 4] Cos[phil14]) - ct Sin[phi[14}]
ADHSL[1, 4] =>
> ADHS8[1, 4]} Cos[phi[151] + ADHSS{2, 4] Sin[phili5]] +
> f (ADNSS[1, 2] Cos[phili51] + Cosl[phili31] Sin{phil[15]1))
ADH6{[2, 4] ->
> ADHS59[2, 4] Cos(phi{iS]]} - ADWSE[1, 4) Sin{phil15]] +
> f (Cos[phil131) Coslphi{15]) - APHSB[L, 2] Sinlphil151D)
ADHSE(3, 2] -> -(Cos[phil141] Sin[phi[t31})
ADH61([3, 4] -> f ADHS58[3, 2] + ADHSB[3, 4]
ADNG2(L, 41 >




> ADHS8{L, 4] Cos[phi[15]] + ADH63[1, 4] Cos[phi[14]] Cos[phi[i5]] +
> ADH58[2, 4] Sin(phi[15]]) +
>
>

+

ADH64[2, 4) (ADHSB(1, 2) Cos[phi[15)) + Cos[phi[13]] SinlphilL5]D)
ADHG3(3, 41 (ADHS8(L, 3] Cosfphil1§]) ¢ Sin(phi{13]] Sin(phi[151})
ADH2[2, 4} ->
>  ADHSS(2, 4) Coalphi{151) - ADHSB{{, 4] Sin[phi[15]] -
> ADH63[1, 4] Cozlphili4]) Sin[phi{1S]] +
> ADH64[2, 4] (Cos[phi[13]) Coslphil15]) - ADHSB[1, 2] Sin(phi[1S)])
>  ADH63[3, 4] (Cos{phil[15)) Sinfphi(13]] - ADHS8[{, 3) Sinlphi[15]}
ADH62(3, 4] ->
>  ADNSB[3, 4] + ADH58[3, 3] ADH63[3, 4] + ADHSB[3, 2] ADH64[2, 4] +
> ABH63(f, 4] Sin{phil[14))
ADH6S[1, 4] ->
>  ADHSB[{, 4] Cos{phi[15]] + ADH66(1, 4] Cos[phi[14]] Cos[phil[{5]) +
> ADRS9[2, 4] Sin[phi[i5)]) +
> ADH66[2, 4] (ADHS&(i, 2] Cos[phi[15]) + Cos{phi[13]] Sinlphi[tS]D
>  ADH66[3, 4] (ADHSB[1, 3] Cos[phi{i5)) + Sin(phi[13]1) Sin(phil15]1D)
ADH6S(2, 4] ~>
>  ADH59(2, 4] Cos[phi[15)] ~ ADHSE[{, 4] Sin[phift5]] -
> ADH66[1, 41 Coz[phi[14]) Sin[phi{15]) »
>  ADH66[2, 4] (Cos([phil13]] Cos[phil15]) - ADHSE[1, 2] Sinl[phi[{5]1D
> ADH66([3, 4] (Cos[phi[15]) Sin[phi13)) - ADHSB[1, 3] Sinlphi{1S1D)
ADHSS(3, 41 ~>
> ADHSE[3, 4] + ADHSS[3, 2] ADH66[2, 4] + ADHSE[3, 3] ADH6S[3, 4] +
>  ADH66(1, 4] Sin[phi[14])
ADH6S[1, 4] ->
>  ADHS8[1, 4] Coa[phi{15)]] + ADMTO[L, 4} Cos{phi[i4]) Cos{phi[15]] +
> ADHS9[2, 4) Sin{phil15]] +
> ADH70[2, 4] (ADHS8(1, 2] Cos{phil15)] + Cos[phi{13]} Sin[phi{151])
> ADHTO[3, 4] (ADHS8(1, 3] Cos{phi[15]) + Sinlphi{13]} Sinlphi{15)}])
ADH6O[2, 41 ->
>  ADHS9[2, 4] Cos[philiS51) - ADHS8(1, 4] Sinfphi[i51] -
>  ADHTO[1, 41 Cos[phi(14]) Sin[phi{15]] +
> ADH70[2, 4] (Cos[phi[13]} Cos{phil1§]] - ADMS8[1, 2] Sinfphi{15}])
> ADH70[3, 41 (Cos[phil[15]] Sin{phil13}] - ADHSE[1, 31 Sinlphi{1S}])
ADH69([3, 4] ->
> ADHSB[3, 4] + ADHS8{3, 2] ADH70{2, 4] + ADHSS[3, 3] ADHTO[3, 4] «
> ADH7O[1, 4] Sin[phil14])
ADHS6[1, 1] -> Coslphi{14]] Cos[phi(15]]
ADHS6{2, 1] -> -(Coslphi{14]] SinfphiliS]})
ADHST{1, 2] -> ADHSB[{, 2] Cos[phi(15]) + Cos{phif13]) Sin(phi{15]}
ADNS7{2, 2] -> Cos[phi[13]] Cos[phi(iS]) - ADHSB[1, 2] Sinl(phi[15])
ADHBL(L, 1] ->
> Cos[delta[$}) Coslphil[14}] Cos[phi[15]] +
>  sinldeltaf5)] (ADHS8[1, 3] Cos[phif15]] + Sin(phifi3)) Sin[phili5]}
ADH61[2, 1] ->
> ~(Cos[deltal[S]] Cozlphi{i4]] Sinl[phi{i§]]) +
>  Sin[delta[5]] (Cos[phi{15]] Sin[phi{13)) - ADHSB[1, 3} Sinlphi(15ID)
ADH61[3, 1] -> ADHSB[3, 3] Sinldelta[5]] + Cosl[deltaf5]] Sin{phil14]}
ADHG2[1, 1] ->
> Cos[delta[s]] Cos[phi[14]1] Cosl[phili5]] +
>  Sin[delta[5]] (ADHS8[1, 3] Coslphif15]) + Sin[phi{i131] Sin[phi[tS1])
ADH62(2, 1] ->
>  ~(Cos[delta{5]] Cos[phi[1411 Sinfphi{151]) *
>  Sin{delta[5]] (Cosl[phi[t5)) Sin[phi{13]) - ADHSS[t, 3] Sin[phift5]])
ADHG2[3, 1] -> ADHS8[3, 3] Sinldelta[5]1] + Cos(delta[5]) Sin(phi{14]]
ADHSS[f, 1] =>
> Cosl[delta[5]] Cos[phi[i4]1] Cosfphif1§]] +
> sin{delta{5]] (ADHS8[{, 3] Cos[phi(15)) + Sin[phi{13]] Sin[phi[1S1D)
ADHGS[2, 1] ->
>  -(Cos[delta[5]1] Coslphi{141] Sin[phi{15)]) +
>  Sin[deltal[5]] (Coz[phil45]] Sinfphi{13)] - ADMSE[{, 31 Sin[phi{151])
ADH6S[3, 1] -> ADNSB{3, 3] Sin{delta[S]] + Cos(deltalS]] Sinlphi[14]]
ADHE9[1L, L] =>
> Cosl[deltalS}] Cos{phili41} Cos{philfS}} +
>  Sinldelta[S]] (ADHS8[1, 3] Cos{phili511 + Sin[phil[i3]] Sin{phi[15}]>
ADR69(2, 1] ->
> -(Cosldelta[§]] Cosl[phi[t4]] Sin[phi{15]1) +
>  Sin[delta[S]] (Cos[phi[1511 Sinlphi[13]1 - ADMSS[{, 3] Sinfphi{S]])
ADH69[3, 1] -> ADHS8[3, 3] Sin[delta[S]] + Cosldelta(5]) Sinlphil14]]
JACR2S5(4] -> ABHST[2, 4] ADHSE[3, 2) - ADHS7[2, 2] ADHS8[3, 4]

+

+

+

-

-+

JACR25[5] -> -(ADHST[t, 4] ADH58[3, 2]) « ADHS7[1, 2] ADHSS[3, 4]
JACR25{6] -> ADMS7(1, 4] ADNS7[2, 2} - ADHST[{, 2] ADHS7[2, 4]
JACH26[4] ~> ADH61{2, 4] ADH6L[3, 1] - ADH61{2, 1) ADH6L[3, 4]
JACR26[5] => -(ADH61[L, 4) ADH61[3, 1]) + ADH6L[1, (] ADR6{[3, 4]
JACR26[6) -> ADH61[1, 4] ADH61[2, 1] - ADH6L[i, 1] ADH61(2, 4]
JACR27(4] -> ADH62([2, 4] ADH62[3, 1] - ADH62[2, 1} ADHG2([3, 4]
JACR27(S] -> -(ADH62[1, 4) ADH62[3, 1]1) + ADH62{1, 1] ADH62(3, 4]
JACR27(6) -> ADH62[1, 4) ADH62[2, 1l - ADH62[L, 1] ADH62(2, 4]
JACR28([4] -> ADH65[2, 4] ADH6S[3, 1} - ADH65[2, L] ADH6S(3, 4]
JACR28[5] -> ~(ADH65{1, 4] ADH6S[3, 1]) + ADH6S[{, t] ADH6S[3, 4]
JACR28[61 -> ADH65[f, 4] ADH65[2, 1] - ADHE5[L, 1] ADHE5[2, 4]
JACR29[4) -> ADH6S[2, 4] ADH69[3, 1] - ADK69[2, 1] ADH69([3, 4]
JACR29[S) -> -(ADHSS[1, 4] ADH69[3, f]) + ADH6S[1, 1] ADH6S(3, 4]

JACR29(6) -> ADH6S{i, 4] ADH6S[2, 1) - ADH69[1, 1] ADH69(2, 4]
(betaf9])® -> (JACR27[6] JACR28{S] (deltal3]}’ -

> JACR27[5} JACH28(6) (delta[3])®
> JACR26[6) JACR28(S) (delta[4])’
> JACR26[S) JACR28[6] (delta[4))?
>
>

+

JACR2S([6] JACR28[5] (delta[5])? + JACR2S[S} JACR28[6] (delta{s])")\

/ (IACR28{6] JACR29(5) - JACR28[S1 JACR29[61)
(delta[t])? ->
> (-(IACR29[5] (beta[91)') - JACR27(S] (delta[3])’ +
> JACR26[5) (deltaf4])’ + JACR2S[5) (delta[51)°) / JACR28(S]
{beta[10})* ->
> (-(IACR29(4] (betva[s'**) - JACRIB[4] (deltali})’ -
> JACR27[4] (deltaf3])* + JACR26{4] (delta[4])’ +
> JACR25[4]} (deltaf51)*) / d
(phil13]1)? -> (ADH69[{, 1) Cos[phi[f5]] (betals])’ -
> ADHE9[2, 1] Sin[phil15]] (betal81)* - Sinfphi[15]] (beta[10]1)’ ¢
> ADH6S[1, 1] Cos[phi{15]] (deltall])’ -
> ADHES[2, 1] Sinlphili51] (deltal1])®
> ADH62[1, 1) Cos[phil15]1] (delta[3})*
> ADH62[2, 1] Sin(philtS]1] (deltal3))’
> ADH61(1, 1] Cos[phi(tS5]) (deltal4))’
>
>
>
>

+

1

‘

+

ADN61L[2, 1] Sin[phil15]] (delta[4])’
ADHS7[1, 2] Cos[phif15]] (deltal5])’ +
ADHS7[2, 2] Sinl[philt5]] (deltal51}*) /

(ADHS6[1, 1) Cos[phil{iS]] - ADHS6[2, 1) Sin{phifiS]])

(phil14))* -> ~(CscIphi[15}] (-(ADHES[L, 1] (batalsD)') -

> ADH6S[t, 1] (delta[t1])’ - ADH62{L, 1] (delta[3])’ +
> ADH6LE(, 1) (delta[4))’ « ADHST{L, 2] (delta[5])* +
> ADHS6[4, 1} (phil13])°*)

(phi[15))* -> ADH69I3, 1] (beta[s])’ + ADH6S[3, 1] (deltali])’ +

> ADH62I3, {] (delta[3])’ - ADH61[3, 1] (deltal4))’ -

> ADHSB[3, 2] (deltal51)* - Sin[phi(t4]) (phi{i3))*

JACR30[6] -> d (bera[10])’

JACR32(4] -> -(JACR29[5] (beta[81)’) - JACR28[5] (deltalt])’ -

> JACR27[S] (delta[3])’ + JACR26(S] (delta[4])’ + JACR2S[S] (deltalS])’
JACR32(5) -> JACR29[4] (beta[91)* + JACR28[4] (delta[1])* +

> JACR27[4) (delta{3])’ - JACR26[4] (delta(4])' - JACR25[4) (deltal5])’
JACR33[1] ~> Cos[phil15]} (phi[15])°

JACR33[2] -> -(Sinlphil1S]1] (phi[15])*)

JACR33(4} ~> Cos[phi[15]1] JACR29{6] (beta[s])’ +

>  Cosfphil1S]} JACR28(6] (deltal(])® +

> CoalphiliS]) JACRZ7(6) (delta[3])* -

>  Cos[phi(15]} JACR26(6) (delta[4])* -

> Cos[philiS]] JACR25[6] (deltaf5])’

JACR33[S] -> -(JACR29[6] Siniphi[15]) (beta[S1)’) -

> JACR28[6) Sin(phil[15]] (deltalil)’ -

> JACR27[6) Sinlphi(15]) (delta[3])’ ¢

> JACR26(6) Sin[phil15]) (delta[4])’ +

> JACR25[6] Sin[phi[15]] (deltaf5])’

JACR33[6] -> (~(Cos[phil[15)} JACR29{4]) + JACR29(S] Sin[phi[1511)
(beta[91)' + (~(Cos[phi[1S]] JACR28[4}) + JACR28[S] Sinlphil[1511)
(delta[1])’ ¢ (~(Cos[phi{15]] JACR27[4]) + JACR27(5) Sinl[phi[1S]1])
(de1ta[3])’ - (-(Cos(phil15]] JACR26[4]) + JACR26[51 Siniphi[15]])
(delta[4])’ - (~(Cos[phil15]]1 JACR25[4]) + JACR2S[S] Sin[phi[1511)
(delta[51)’

JACR34{1] ~> -(Cos[phi{15]1] Sinl[phi[14]] (phil141)*) +

> ADHS6[2, t) (phif1s})®

JACR34{2] -> Sin[philt4}] Sinfphif[t5]] (phi[14])* - ADHS6[1, {] (phi[15))®
JACR34[3] -> -((~(ADHS6[1, 1] Cos[phi(iS11) + ADHS6[2, 1] Sin[phi{1S]D)
> (phil14D> ")

JACR34{4] -> (ADHS6[2, (] JACR29{61 ~ JACR2S[S] Sinl(phi[14]])

(beta[9])* + (ADHSS[2, t] JACR2E[6} - JACR28{S] Sinlphili4]))
(delta[f])’ + (ADHS6[2, {] JACR27[6] - JACR27(5) Sinlphi[14]])
(delta[3])* - (ADHS6[2, {] JACR26[6] - JACR26{S] Siniphi(14]]
(delta[4])® - (ADESS[2, t] JACR2S5[6] - JACR2SIS) Sin[phi[14]])
(deltal51)’

JACR34[5] -> (-(ADHS6[1, 1} JACR29[6]) + JACR29[4] Sin({phi[t41])

VvV v v

v v v v v

> (betal91)* + (-(ADHS6[1, 1) JACR28(6]) + JACR28(4] Sin(phili4]1])
> (delta[1])* + (-(ADHS6[1, 1] JACR27[6]) ¢ JACR27{4) Sinfphif14]])
> (delta[3])* - (-(ADHS6[L, 1} JACR26{6]) + JACR26[4] Sin{phi[i4]])
> (delta[41)’ - (-(ADHS6{L, 1) JACR25(6]) + JACR25[4] Sin[phili4]])
> (delta[5])’

JACR34[6] -> (-(ADHS6(2, 1] JACR29(4]) + ADHS6[1, (] JACR29(S])

> (beta[9])" + (~(ADHS6[2, 1] JACR28[4]) + ADNS6[1, 1] JACR28[SD)
> (deltaft])’ + (~(ADHS6{2, 1] JACR27{4]) + ADHS6[1, 1] JACR27(5))
> (delta[3])* - (-(ADHS6[2, 1] JACR26{4]) + ADHS6[i, 1] JACR26{5])
> (delta[4])’ - (-(ADMS6[2, 1] JACR2S[4]) + ADHS6[1, 1] JACR2S[S])
> (delta{5])’

JACR3S[1] ~> -((ADHS6{2, 1] ADHS8([3, 2] - ADHS7[2, 2] Sin(phi{141))

> (phil131)*) - ADMSB[3, 2] Cos(phi{iS]} (phil[14))’ +

> ADHS?{2, 2} (phi[15))’

JACR35([2] -> -({-(ADHS6[1, 1] ADHS&[3, 21) + ADHST[1, 2] Sin(phif141])
> (phi[13])*) + ADHS2([3, 2) Sinfphi{15]] (phifi4])* -

> ADHS7[1, 2] (phi{15])"

JACRIS[3] => -((-(ADH56(2, (] ADHST[1, 2]) + ADHS6[{, {] ADRS7(2, 2])
> (phi[13])*) - (~(ADNS7[1, 2] Cos{philiS]1]) +

> ADNS7[2, 2] SinfphiltS)}1) (philt4])*

JACR3S([4] -> (-(ADH53[3, 2] JACR29(S]1) + ADHST[2, 2] JACR29(6])
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> (beta[9))? + (~(ADMSB[3, 2) JACR2E[S]) + ADHST[2, 2] JACR28[6])
> (deltaffl)® + (-(ADHSE{3, 2] IACR27[S]) + ADHS57[2, 2] JACR27[6])
> (delta[3])* - (-(ADNS8[3, 2] JACR26(5]) + ADHS7[2, 2] JACR26{61)
> (delta[4])’ - (~(ADHSE[3, 2] JACR2S[5)) + ADMST[2, 2) JACR25(6]
> (deltalS])® - (ADHS6[2, 1] JACR25[6] - JACR25[S] Sin[phil141])

> (phi[£31)* - Cos[phi{15]] JACR25[6) (phil14])’ +

> JACR2S[S] (phil15))°

JACR3S(S) ~> (ADNS8[3, 2) JACR29[4] - ADHST[{, 2] JACR29[6]) (beta[9])' +
(ADHS8[3, 2] JACR26[4] - ADHST[1, 2] JACR28[6]) (deltalt])® +
(ADHSB[3, 2} JACR27[4] - ADHST[{, 2] JACR27[6]) (delta[3])’ -
(ADHSB{3, 2) JACR26{4) - ADHST[1, 2] JACR26{61) (delta[4])’ -
(ADHSB[3, 2] JACR25[4] - ADHS7[1, 2] JACR25[6]) (delta[5))’ -
(-(ADHS6{1, 1] JACR2S[61) + JACR2S[4] Sin{phil141]) (philt3])® «
JACR25[6) Sinlphil45]]1 (phil141)> - JACRIS[4] (phil15])

JACR3S[6] -> (-(ADHS?[2, 2] JACR29{4]) + ADHS7[f, 2] JACR29[S])

VvV VY vy

> (beta[9])® + (-(ADH57[2, 2} JACR28[4]) + ADHST(1, 2] JACR2S(SD)
> (delta{i])’ + (-(ADN57[2, 2] JACR27[4]) ¢ ADHS7[{, 2] JACR27[S])
> (deltal3])" - (-(ABHS7[2, 2] JACR26[4]) + ADHS7{1, 2] JACR26[5))
> (delta(4])* - (-(ADH57(2, 2] JACR25[4]) + ADHS7(i, 2] JACR25[5])
> (deltafS])* ~ (~(ADHS6[2, 1] JACR25[4]) ¢ ADHS6f1, {] JACR25{S})
> (phi[i3])’ - (~(Cos[phil15]] JACR25[4)) + JACR2S[S) Sin[phil15}])
> (phif14]>

JACR36[1) ~> -((-(ADNSB{3, 2) ADH61[2, 1]) + ADHS7[2, 2] ADHAL[3, 1])
> (deltafS])*) - (ADHS6[2, 1] ADWGI[3, 1] -

> ADH61[2, 1] Sinlphi[14]1]) (phi(t3])" -

> ADH61[3, 1] Cos[phi[15]1] (phi[141>' + ADH6i[2, ] (phi[i5])®
JACR36[2] -> -((ADHSE[3, 2] ADH6L[1, 1] - ADHS7[1, 2] ADH6L(3, (])

> (delta{5])") - (-(ADHS6[{, {] ADH61[3, {]) +

> ADH6L[1, 1] Sin(phi[14])) (philt3])’ +

> ADH6L[3, 1] Sin[phi[i5]11 (phi{14))® - ADH61[1, 1) (phi{iS])®
JACR36[3] -> ~((-(ADHS7[2, 2] ADH64[t, 1]) + ADHS7({, 2] ADH61[2, L])
> (delta[51)') - (-(ADHS6[2, 1] ADMGL[f, 1]) +

> ADHS6[1, £} ADH61[2, 1}) (phi{13])’ -

> (-(ADHB1{1, 1] Cos[phili5]]) + ADH6i[2, 1] Sin[phili5]]) (phi[14])’
JACR36[4] -> (~(ADH61[3, 1} JACR29{5)) + ADH61{2, 1] JACR28[6])

> (beta[9])* + (~(ADH6L[3, 1) JACR2E[S]1) + ADH6{[2, (] JACR28{6])
> (deltaf1])’ + (-(ADH61{3, 1} JACR27{S])) ¢ ADH61[2, 1] JACR2T([6])
> (delta[3]1)* ~ (~(ADH61([3, 1} JACR26(S1) + ADH6i(2, L] JACR26[6])
> (deltald])? - (-(ADH58[3, 2] JACR26[S}) ¢ ADHS7[2, 2] JACR26[6])
> (delta[51)* - (ADNS6[2, 1] JACR26[6] - JACR26[5] Sin[phili4]1])
> (phi[13])* - Cos[phif1S5]] JACR26[6]} (phili4])’ +

> Jacr26(S] (phil[15))*

JACR36[5] ~> (ADH61i[3, 1} JACR29([4) - ADH6L{1, 1] JACR28{6]) (beta[9])* +
(ADH61[3, 1] JACR28[4] - ADR61[{, 1) JACRZ8{61) (delta(i])’ +
(ADH61[3, {1 JACR27{4]) - ADH61[f, 1] JACR2T[6]) (delta[3])’ -
(ADH61[3, 11 JACR26[4] - ADH61{{, 1] JACR26[6]) (deltaf4])’ -
(ADH58{3, 2] JACR26(4) - ADHS7[1, 2} IJACR26[6]) (delta{S})’ -
(-(ADH56[1, 1] JACR26[6]) + JACR26[4] Sin[phi{14}]) (phi[13])* +
JACR26(6] Sin[phif1S1] (phili14))’ - JACR26[4) (phi[i5])’
JACR36{6] -> (~(ADH61[2, t] JACR29[4]) + ADH61[{, 1]} JACR29[S5])

vV vivvy

> (batal9])? + (~(ADH61[2, 1] JACR28(4]) + ADMGL[L, 1] JACR28[5))
> (daltalt])® + (~CADHG1(2, 1] JACR27[4]) + ADH6L{t, {] JACR27[5]

> (deltal31) = (~CADHGL(2, 1) JACR26[4]) + ADH61[i, (] JACR26{S])
> (delta(4]) - (~(ADHS7T[2, 2] JACR26[4)) + ADNST(i, 2] JACR26[S])
> (deltal[5])’ = (-(ADHS6[2, 1] JACR26[4]) + ADHSS[{, 11 JACR26([S])
> (phil13])> = (-(Cos[phi[i5]] JACR26[4)) + JACR26[5] Sin[phi[i5]])
> (phil14])’

JACRAT{1] -> ~((~(ADH61[3, L] ADH62[2, L1) + ADN6L[2, 11 ADH62(3, 1]}

> (deltal4])?) - (~(ADHSS(3, 2] ADHG2[2, 11D +

> ADHS7{2, 2] ADM62[3, 11) (delta[SI)* =

> (ADNS6{2, 1] ADH62[3, 1] - ADH62[2, 1) Sin[phili4]]) (phi[13))’ =

> ADH62(3, 1) Cos[phift5]) (phi[141)* + ADH62[2, 1] (phil[15])°
JACR37(2) -> -((ADH6L[3, 1] ADH62[1, 1] - ADM61i[1, 1] ADH62[3, L1)

> (delta[4])?) - (ADMSB(3, 2] ADH62{l, 1] -

> ADHST[{, 2] ADH62{3, 1]) (deltalS])’ -

> (-(ADNS6[1, 1] ADN62(3, (]) + ADH62[{, 1] Sin[phi(14]]) (phil[13])’ +
> ADM62(3, 1] Sin[phil151} (phi{t4}>’ = ADN62([f, 1} (phi{i81)’
JACRT(3) -> -((-~(ADH61(2, 1] ADH62(t, 1]) + ADHe{[t, 1] ADHE2[2, 11)

> (deltal4])) ~ (~(ADHST[2, 2) ADH62[t, 11D +

> ADHS7E1, 2] ADH62[2, 1)) (delta[5])* -

> (-(ADH56[2, 1} ADM62[1, 1)) + ADHS6[1, f] ADM62[2, {]) (phift3])' -
> (~(ADH62[f, ] Cos{phil1S])) + ADH62[2, 1] Sin[phif15]]) (phi[14])’
JACR3T[4] ~> (~(ADN62{3, (] JACR29[S]) ¢ ADH62(2, 1] JACR29[61)

> (beta(9])? + (~(ADH62[3, 1] JACR28(S]) + ADH62[2, 1] JACR28[61)

> (doltal1])’ + (-(ADR62[3, 1] JACRZTISI) + ADH62(2, 1] JACR2TIS])

> (delta[3])’ - (-(ADH6L[3, 1] JACR27[5)) + ADN6L[2, 1] JACR27(6])

> (deltal4])> - (-(ADHSE[3, 2] JACR27(S)) + ADHS7[2, 2} JACR27[6))
> (deltaS))* - (ADHS6(2, 1] JACR27(6] - IACR27(S] Sin(phi[14]})

> (phi131)? - Coslphi[tS}] JACR27E6] (phil14])' +

> JACR2TIS] (phi(151)’

JACRAT[S] -> (ADH62[3, 1] JACR29[4] - ADH62[t, 1] JACR29{61) (bera[9])' +
> (ADH62[3, 1] JACR28[4)} - ADH62[1, 1) JACR2E[6]) (delta[1]} +
(ADH62[3, 11 JACR2T[4] - ADH62{1, 1] JACR27[6]) (deltal3])’ -
(ADH61[3, 1] JACR27[4] - ADM61[f, 1] JACR27{6]) (delta(4))' -
(ADHSS8[3, 2] JACR27[4] - ADHST[1, 2] JACR27[6]) (delta[5])’ -
(-(ADHS6[, 1] JACR27[6]) + JACR27[4) Sin[phi[f4]1) (phil1a])’ +

v v v v
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> JACR27(6] Sinl[phi{151] (phi[141)’ - JACR27[4] (phi[1S])*

JACR3T[6] -> (-(ADH62[2, 1] JACR29(4]) + ADH62(1, 1] JACR29{S])
(hetal9]1)® + (-(ADH62{2, t] JACR28{4]) + ADH62{1, 1] JACR28{51)
(doltalf]> ¢ (-(ADHE2[2, 1] JACR2T[4D) + ADH62([{, 1] JACR27(S])
(deltal3]))’ - (-(ADH61[2, 1) JACR27[4]) + ADH6L[{, ] JACR27IS])
(deltal4])? - (~(ADHS7[2, 2] JACA27[4]) + ADHST{1, 2] JACR27[5))
(deltafS])’ - (-(ADHSS[2, 1] JACRZ7{4]) + ADHSG[L, ] JACR27[5])
(phi[13])" - (-(Com[phi[151] JACR27{4]) + JACR27(S] Sin[phi[t5)])
(phif14])?

JACR38[11 -> (-(ADH62[3, 1] ADHES[2, 1)) + ADH62(2, 1] ADHES[3, tD)

> (doltaf3))? - (-(ADM61[3, 1] ADH6S[2, 1]) +

> ADH6L[2, 1) ADH6S[3, 1]) (deltal4})’ -

> (-(ADRS8[3, 2} ADH6S[2, 11) + ADHS7[2, 2] ADH6S[3, 1]) (delta(S])’ -
5

>

Vv vivivve

(ADHS6[2, 1] ADHGS[3, 1] - ADHGS[2, 1] Sin(phi(14}}) (phil[t3])’ -
ADHES[3, 1] Cos[phil15]] (phil14])* + ADHES[2, t] (phil151)
IACR3B(2] -> (ADH62[3, 1] ADHESI[1, 1] - ADHS2[L, 1] ADHSS[3, 1))
> (deltaf3])* - (ADH6L(3, 1] ADHGS[{, 1] - ADH61[1, {1 ADHES(3, 11)
> (deltal4])" - (ADNSS[3, 2) ADHGS[{, (] - ADHS7[{, 2] ADHES[3, 11)
> (delta[5))7 = (~(ADHS6IL, 1] ADN6S[3, 1]) +
> ADHS[1, 1] Sin(phil141]) (phil13})’ +
> ADHS[3, 1] Sinlphi[15]) (phi(14])’ - ADM6S{L, 1] (phi[15])
JACR38(3] -> (-(ADM62{2, 1] ADH65[1, f1) + ADM62[1, t] ADW6S{2, (1)
> (dalta{3])' - (~(ADH61[2, 1) ADHES[1, L)) ¢
> ADMGL(L, 1] ADHS5[2, 1]) (deltal4])’ -
> (~(ADHST[2, 2] ADH6S[f, 1)) + ADHST(1, 2] ADH65(3, t}) (delta(S])* -
> (~(ADHS6[2, 1] ADHSS[L, 11) + ADMS6[t, 1] ADH6S[2, {1) (phi[13])? -
> (~(ADN6S(f, 1] Cos[phi(15]1) + ADHES[2, 1] Sin[phi{151]) (philt4])’
JACR38{4] -> (-~(ADHGS[3, 1) JACR29[S]) + ADN6S[2, 1] JACR29(6])
> (bota[9]) + (-(ADHGS[3, 1] JACR28(S]) + ADHES(2, 1] JACR28[6])
> (deltali])* + (-(ADW62[3, 1] JACR28[5]) + ADH62[2, 1] JACR28(6])
> (delta[3])? - (~(ADH6L[3, 1} JACR2B[S]) + ADN61[2, 1] JACR28[6])
> (deltal4])’ - (~(ADHSB[3, 3] JACR28[S)) + ADHST[2, 2] JACR26[61)
> (deltal5])" - (ADHS6[2, 1] JACR28(6] - JACR28([S] Sin(phil[14]])
> (phi{131)? - Cosphil15]] JACR28[6] (phil14])’ +
> JACR28(S] (phi[15))°
JACR3E[S] -> (ADH6S[3, (] JACR29[4] - ADMESEL, 1] JACR29[61) (betal81)’ +
> (ADHSS[3, 1] JACR28[4] - ADH6S[1, 1] JACR28[6]) (deltali])’ +
> (ADHG2[3, 1] JACR28[4] - ADH62[{, 1] JACR28[6]) (delta[3])’ -
> CADHGA(3, 1] JACR28[4) - ADHGL[{, 1] JACR28[61) (delta[4])’ -
> (ADH58[3, 2) JACR28[4] - ADNS7[1, 2] JACR28[6]) (deltaf$])* =
> (-(ADMS6[1, 1] JACR28[6]) + JACR28[4] Sin(phi[14]]) (phi(13])? +
> JACR28[6) Sin[phil15]] (phi(141) - JACR2E[4] (phi[151)*
JACR3E[6] => (~(ADHGS(2, 1) JACR29{4]) + ADH6S[1, 1] JACR29([5])
(beta[9]) + (-CADHG5(2, 1] JACR28[4]) + ADMSS[1, 1] JACR28(51)
(deltal1])’ + (~(ADH62(2, 1) JACRZB[4]) + ADM62[L, 1] JACR2B(51)
(delta[31)? = (~(ADH61(3, 1] JACR28[4]) + ADR6L[1, 1] JACR28(S])
(delta(4])? - (-(ADHS7[2, 2] JACR28{4]) + ADHS?[{, 2] JACR28(5])
(delta[51)! - (~(ADHS6[2, 1] JACR28(4]) + ADHS6[1, 1] JACR28(5))
(phi[13])* - (-(Cos[phi[15]) JACR28[4]) + JACR22(5) Sinl[phi[iS1])
(phi(14))®
JACR39[{] -> (-(ADH65[3, 1] ADH69[2, {]) + ADHE5(2, 1] ADH6S[3, 1]}
> (deltalt])’ + (~(ADH62(3, L1 ADHGSI2, 1))
> ADH62[2, (] ADHSS[3, 11) (deltal3])’ -
5 (-CADNG1{3, 1] ADHES[2, 11) + ADHGL(2, 1] ADH6S[3, 1]) (deltald])’ -
>
>
>

R I

(-(ADHSS(3, 2} ADH6S{2, 11) + ADHS7[2, 2] ADH6S{3, 11) (delta(S])’ -
(ADHS6{2, 1) ADH6S(3, 1) - ADH69[2, 1] Sin[phift4]1) (phil13})’ -
ADH69(3, 1] Cos[phil15)T (phil14]1)* + ADH69({2, 1] (phi[15])’
JACR29[2) -> (ADH6S[3, t] ADH69[f, 1] - ADHGS[t, 1] ADH69(3, 1]}
> (delta[41)* + (ADH62[3, 1] ADN69(L, 1} - ADH62(f, 1] ADH6([3, 1])
> (delta{3])* - (ADHGL[3, (] ADH6S[t, 1] - ADH6L[f, 1} ADH69[3, 11)
> (deltal4])® - (ADMSE(3, 2] ADH63(f, L] - ADHS7{L, 2] ADH6S[3, 1]}
> (deltaiS])* - (-(ADHS6(1, 1] ADH69[3, L1) +
> ADH69(1, 1) Sin{phil14])) (phi[13])’ +
> ADH6S[3, 1] Sin[phili511 (phif{i41)>* - ADH6S[{, L] (phil[15])*
JACR39[3] -> (-(ADH65[2, 1] ADH6S[1, 11) + ADH6S[1, 11 ADN6S{2, 1])
> (deltaf1])? + (-(ADH62[2, 1] ADW6S[I, 1]} +
> ADNG2(1, ] ADM69[2, 1]) (delta[3])’ -
> (-(ADHS1[2, 1] ADH6S[L, t]) + ADH6L[{, 1] ADH69[2, 11} (delta[4])* -
> (-(ADHS7[2, 2] ADH69(L, 11} + ADHST{{, 2] ADH69[2, L1} (delta[S1)* -
> (~(ADHS6{2, 1] ADH6S[{, 1]) + ADNS6{1, 1] ADH63{2, £]) (phi[(3])* -
> (~(ADH6O[{, 1) Cos[phi[15)1) + ADH6S[2, 1] Sin{phil[1511) (phif14])*
JACR39[4] -> (-(ADH69[3, 1) JACR29[5]) + ADH69[2, 1] JACR29[61)
> (betaf9])? + (-(ADRSS[3, 11 JACR29[5]) + ADH6S[2, 11 JACR29[6])
> (delta(1])* + (-(ADH62[3, 1] JACR29(5]) + ADH62(2, 1] JACR29(6]1)
> (deltal3])' - (-(ADH6{[3, 1] JACR29{5]) « ADH6{[2, 1] JACR29(6])
> (delta[4])’ ~ (-(ADHSB[3, 2] JACR29{S}) + ADNS7([2, 2] JACR28{6])
> (delta[5])’ - (ADHS6[2, 1] JACR29[6] - JACR29(S] Sinlphifi4]])
> (phi{13])’ - Coslphil1511 JACR29[6] (phift4])® +
> JACr29[51 (phil15])*
JACR39(S] -> (ADH69[3, 1] JACR2S[4} - ADH6S[1, 1) JACR29(6]) (beta[91)’ +
(ADH6S[3, 1) JACR29(4} - ADHSS[{, L] JACR29(6]) (delta{t])’ +
(ADH62{3, 1] JACR25[4] - ADH62(1, 1] JACR29(6]) (delta[3])’ -
(ADH61[3, 1) JACR29[4] - ADH61([1, ] JACR29(6]) (delta{4])’ -
(ADHSS[3, 21 JACR29[4] - ADHS7{{, 2] JACR29[6]) (delta(S])’ -
(- (ADH56(1, t] JACR29[6]) + JACR29[4] Sinlphil14]]) (phi{13])’ +
JACR29{6) Sin{phi(15]] (phil14))* -~ JACR29[4) (phi[i5])’®

vvivy vy




JACR39[6] -> (-(ADM69[2, 1] JACR29[4]) + ADH6S[1, t] JACR29[SD)
(bata{9])* + (~(ADHE5[2, 1] JACR29(4]) + ADH6S[1, {] JACR29[S])
(deltal[1])* + (-(ADH62[2, 1] JACR29[4)) + ADH62[1, 1] JACR29[S])
(delta[3])* - (-(ADH61[2, 1] JACR29(4]) + ADH61{t, 1) JACR2S[S])
(delta[4])® = (-(ADH57[2, 2] JACR29{4]) + ADHST[L, 2] JACR29(S])
(delta[5])* ~ (~(ADH56[2, 1] JACR29{4]) + ADHS6[L, 1] JACR29(S])
(phi{13])* = (-(Cos[phi[iS}] JACR29(4]) + JACR29{S] Sin[phi[15§1])
(phil14])*
JACR31{6] ~-> -(JACR30[6] (betaf10])’)
JACR40[1] -> JACR3S[1] (beta[9])> + JACR38[1] (delta{i])’ +
> JACR37[1] (delta[3])’ - JACR36(1] (delta[4])’ -
> JACR3S[1] (deltalS])? - JACR34(1] (phi[13]1)’ - JACR33[1} (phi[{4])
JACR40[2] -> JACR39[2] (beta[9])’ + JACR38(2] (delta{i])’ ¢
> JACR37[2) (deltaf3])’ - JACR36(2] (delta[4]})® -
> JACR3S{2] (deltal[S1)’ - JACR34{2] (phil13])’ - JACR33[2] (phil14])’
JACR40{3) -> JACR39[3] (beta[91)* + JACRIZ[3] (deltalt])* +
> JACR37{3] (delta[3]1)’ ~ JACR36(3) (delta[4])’ -
> JACR35[3) (delta[S])® - JACR34[3) (philt3])’
JACR40([4] ~> JACR3S{4) (beta[9])' + JACR3S[4] (delta[i])’ +
> JACR37[4] (delta[3])’ - JACR36[4] (delta(4])’ -
> JACR3S[4] (delta{S))' - JACR34[4] (phift3])' -
> JACR33[4] (phil14])’ ~ JACR32[4] (phil15])’
JACR40[ST -> IACR39[S] (betal9])’ + JACR3Z[S} (deltal[t])’ +
> IACR37[S) (deltal3])’ - JACR36[5] (delta(4])’ -
> JACR3S[S] (deltal5])’ - JACR34[S) (philt3])' -
> JACR33[5] (phi[14])* - JACR32[5] (phil1S])®
JACR40[6] -> JACR39{6] (betal9])' + JACRIB[6] (deltal(]})’ +
> JACR37[6) (delta[3])’ ~ JACR36([6] (delta(4])’ -
> JACR3S[6) (delta(51)’ - JACR34[6] (phil[13])’ - JACR33[6) (phil14])’
(bata[9])*’ ->

(-(JACR28{S] JACR31[6]) ~ JACR28{6] JACR40[5] + JACR28{S] JACRsC[6) +

JACR27{6]) JACR28[5] (deltal3])** =~
JACR27[5] JACR22[6] (delta[3])*’ -
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+

JACR26[5] JACR28[6] (deltal4])'* -

JACR25[6] JACR28[5] (deltafS])*® + JACR25{5) JACR28[6] (delta[(5))>’

>
>
>
> JACR26[6] JACRZB([5] (deltaf4])’’
>
>
>

) /7 (JACR28{6] JACR2S{S) - JACR28{S] JACR29(6])
(deltaf1])?> ->
> (~JACR40[S] - JACR29[5] (beta[9]1)'* - JACR27[S) (delta{3])’! +
> JACR26[S] (delta[41)*’ » JACR25(5] (delta{5))') / JACR28(S}
(beta[10])?* >
S (-JACR40[4] - JACR29[4] (beta[9])’* - JACR28{4} (delta(i])”’ -
> JACR27[4] (delta[3])?’ + JACR26[4] (delta(4D’ +
> JACR25[4] (delta[51)**) / d
(phi[13])77 =>
>  (Cos(phi[L5)) JACR40[1] - JACR40[2} Sin(phil1§]] +
> ADH69(1, 11 Cos[phil[15]} (beta[s])’’ -
> ADH69(2, 1] Sin[phi[15]] (beta[91)’’ - Sin[phi(15]] (bera[10])’’ +
> ADH6S(1, 1] Cos[phil[151]1 (delta(t])’’ -
> ADH65(2, 1) Sin[phi[151) (deltaft])’’ +
> ADH62{1, 1] Cos[phi[i5]] (delta[3])'’ -
> ADH6212, 1] Sin[phil1511 (delta[3])** -
>
>
>
>
>

+

ADH6L{1, 1] Cos[phil15]) (deltal4])’’
ADH61{2, (] Sin[phi[i5]1] (delta[4D>*’
ADHS7{1, 2] Cos[phil151] (delta[SD)*®
ADHS57(2, 2] Sin[phil15]] (delta[5])’*) /
(ADH56(1, 1] Cos[phi{15]] - ADH56[2, 1] Sin[phif15]1D)
(phi{14])>* =>
> ~(Csc{phi[151] (-JACR40[1] - ADH6S([1, 4] (beta[s])™’ -

+

> ADH6S[1, 1) (delta[41)*? - ADH62[1, 1] (deltaf3])'* +
> ADH61[1, 1) (delta[4]1)** + ADHS7[{, 2] (delta{S})’! +
> ADHS6[1, 1) (phil131)**))

(philis])?? ->
> JACR40(3] + ADH6S[3, 1] (betal9])’* + ADH6S[3, 1] (deltal1])’! +
> ADH62(3, 1] (deltal3])*> - ADH61(3, {] (delta[4])*’ -
> ADHSE[3, 2] (delta[5]1)*’ - Sin{phil14]) (phil{3])*
betals] -> 0
ADH73(2, 4] -> (e + h2) Cos[delta[3))
ADH74(3, 4] -> -a2
-14 + ADH73(2, 4]
betal?) -> -ArcSin[-- -1 - deltal3]
ADHTAL3, 4]
ADR78[2, 4] -> -(ADH74[3, 4] Sin{beta[7]])
ADHT?[2, 4] -> e + h2 + ADH78[2, 4]
ADHTS([3, 4] -> ADHT4(3, 4} Cos[beta(7]]
ADH76[2, 4] -> ADNTT(2, 4] Cos[delta{3)] - ADH78(3, 4] Sinldelta(3]]
ADH76[3, 4] -> ADH78[3, 4] Cosl[delta[31] + ADH?7[2, 4] Sin{delta{3]]
2
s[4] -> h3 - (-2 13 + Sqre(4 13 -

2 2 2 2
> 413 +14 - ADHT6[2, 4] - ADM76[3, 41D / 2
phil12] -> -3.14159
ADHE3[t, 1} ~-> Cos[phi{i2]]
phil11] -5 -ArcTan[ADH83[L, 1}, 0]
ADHES[3, 2] -> -(Cos[deltal3]] Sin[beta[7)]) - Cos[betal7)] Sinldelta[3}]
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ADHES[3, 2] -> ADH86(3, 2]

ADHE6[2, 2] -> Cos[beta[7]] Cos[delta[3]] - Sin[beta[?}} Sin[delta[3}]
ADHB4[2, 2] -> ADHE6[2, 2] Coslphil12]]

ADHE4[3, 2] -> ADHS5(3, 2] Cosfphil12}]

phi[10] -> ArcTan[ADH84([2, 2], ADHB4[3, 21}

ADH73[3, 41 -> (e + h2) Sinldelta(3]]

ADHS3[1, 4] -> 14 Sin[phi{12]}

ADHS2[{, 2] -> -(Cos[phil11]) Sin[phil12]1])

ADH92[{, 4] -> ADH93[1, 41 Cos[phi(11]1] - 13 Sin{phil[t1]]

ADH92[3, 2] => Sin[philf1]] Sinlphi[12]]

ADNS2[3, 4] -> ~(13 Cos[phil1t}]) - ADHO3[1, 4] Sinlphil1t])

ADH93[2, 4] -> -(14 Cos[phi(t2]1])

ADHO7[3, 4] -> -h3 + ADH73{[3, 4] + =s[4]

ADH92[3, 1] -> -(Cos[phil12)] Sin{phi[11]])

ADHISE{, 4) -> ADH92(f, 4] + (-h3 + s[4]) Sinlphi{ti])

ADHSS[2, 4) ->

> ADH93{2, 4] Cos[phi[10)) - ADH92[3, 4} Sinlphifi0]] -

> Cosiphil{1]) (-h3 + s{4]) Sin[phi{101]

ADHOS[3, 4] ->

> ADH92{3, 4] Coslphi[10)} * Cos[phi{101] Coslphi[1t]] (-h3 + s[4]) +
> ADH93[2, 4] Sinlphi[10}}

ADHO6(1, 4] ->

> ADH73{2, 4] ADHS2(f, 2) + ADMO2[{, 4] + ADHOT[3, 4] Sin(philti]]
ADHO6[2, 4] ->

> ADHI3(2, 4] Ces[phili0]) - ADN92(3, 4} Sin{phifi0]] -

> ADH97(3, 4] Cos{phi[t1]) Sin{phi(10]) +

> ADH73[2, 4] (Cos(phi[10)} Cos(phi[i211 - ADH92(3, 2] Sin{phili0]])
ADH96([3, 4] ->

> ADN92(3, 4] Coslphi(10]] + ADHS7[3, 4] Cos{phif{t0l] Cos[phil11]] +
> ADH93[2, 4] Sinlphi(to]]) +

> ADN73[2, 4] (ADH92[3, 2} Cos[phi{10]] + Cosl[phi[12]] Sin{phi(101])
ADH90[2, 3) -> ~(Cos[phil11]] Sin[phi[101])

ADH90[3, 3) -> Coslphif10]] Cos[phi(11]]

ADH91(2, 3} -> -(Cos[philt1]}] Sin[phi{10]1)

ADH91[3, 3} -> Cos{phi[10]] Cosl[philiil}

ADH92(1, 1] => Cos[phil11]} Cos[phifi2}]

ADHOS[2, 1} -> -CADH92(3, ] Sin[phi[t0]]) + Cos[phi{10}] Sin[phi[12]]
ADH9S[3, 1] => ADH92(3, t} Cos{phi{10}] + Sin[phi{10}] Sinlphif12]]
ADH96{2, 1] -> -(ADH92{3, 1] Sin[philt0]]) * Cos{phi{101] Sin[phi(12]]
ADHO6(3, t] -> ADHO2(3, 1} Cos{phi{10]} + Sin[phil10]} Sin{phil42]}
JACR46{4] -> ADHS5[2, 4] ADHSS{3, 1] - ADHSS[2, 1] ADHSS(3, 4}
JACR46(5} -> -(ADHSS[{, 4] ADNSS[3, 11> + ADH92[{, 1] ADNSS[3, 4]
JACRA6(6} -> ADHOS(L, 4) ADH95{2, {] - ADH92[i, 1] ADH9S([2, 4]
JACRAT[4] -> ADH96[2, 4] ADH96(3, {] - ADHS6[2, 1] ADHOG[3, 4]
JACRA7[S] ~> -(ADH96[1, 4] ADH96(3, 1)) + ADH92[f, 1} ADHO6(3, 4]
JACRAT[6] => ADHS6([{, 41 ADH96[2, 1] - ADHO2[{, {] ADHO6(2, 4]
(beta[7])* => ((~(ADH91[3, 3] JACR46(S]) « ADH91[2, 3] JACR46[61)

> (delta[3]1)’) / (ADHSI{3, 3] JACRAT(5} - ADNS1[2, 3] JACR47[6])
(s[41)" => (~(JACR47[S} (beta[7])') - JACR46[S) (delta[3]1)’) / ADHS1[2, 3]
(betaf8])? =5 -((~(JACR4T[4] (beta[7])’) - JACR46[4] (delta[3])’ -

v

v

v

v v

v v

> Sinlphilitl] (s[41)") / a2)

(phil1]1)* -> (-(ADH9O[3, 3] ADHS6[2, L] (betal7])*) +
> ADHSO(2, 3] ADHS6[3, 1] (beta[7])’ -

> ADHOO([3, 3] ADHS5{2, 1] (delta[3])' ¢

> ADHSO[2, 3) ADHIS[3, 1] (deltal3])") /

> (ADH9O[3, 3] Cos[phi(10]) - ADN30[2, 3] Sinlphil10]))
(phif12])* => (~CADH96[2, 1] (betal7])*) - ADHSS[2, L] (delta[3])? -
> Cos[phil10)1 (philt1]>’) / ADHSO[2, 3]

(phi[10])* -> -(ADHO2[1, 1] (beta[71)?) ~ ADH92[1, 1] (delta[3))’ -
> sin[phili1l] (phi{12})*

JACRSO{5] -> -(JACRAT([6] (betal7])’) - JACR46(6] (delta[3])’ -

> ADHSL[3, 3) (s[4])'

JACR50{6) -> JACRAT(S] (beta[7])’ + JACR46[5] (delta{3])’ +

> ADHO1[2, 3] (s(4])

JACRSE[2] => -(Sin[phi(10]] (phi[10])*

JACRS1[3] -> Cos(phi[10}] (phil[10])*

JACRS1[4] -> (Cos[phil10]] JACR47(6) - JACR47[5] Sin{philtO)])

> (beta(7])’ + (Cos{phi[10]) JACR46([6] - JACR46[5) Sin[phi[10}])
> (delta{3])* + (ADR91[3, 2) Cos[phi[10]] - ADH9L[2, 2] Sinlphi(101])
> (s(41>°

JACRS1{5} -> JACR47(4] Sin{phil10}} (bera[7])’ «

> JACR46(4] Sinlphif10]] (deltal3])* +

> Sin{phi[10]] Sin(phili1)]} (s[4])

JACRS1(6] => -(Coslphi(10]] JACR47[4] (beta(7])’) -

> Cos[phi[10}] JACR46(4] (delta[3])' -

> Coafphif10]] Sinl(philtt]] (s(4]>’

JACRS2[1] -> (ADH9O[3, 3] Cos(phi[10}]} - ADH90[2, 3] Sin[phi[101])
> (phi{11})?

JACRS2[2] -> -(ADH90[3, 31 (philto])") +

> sin[phif101] Sinlphi{tt}] (phil{1])

JACR52{3) -> ADH90[2, 3] (phi[i0])* - Cos(phi[101] Sin(phift1}] (philt1])’
JACRS2[4] -> (-(ADH90{3, 3] JACR4T{S}) + ADHSO[2, 3] JACR47[6])

> (beta{71)* + (-(ADHO0[3, 3] JACR46[5)) + ADH90[2, 3] JACR46[6])
> (delta{3])* + (-(ADHSO[3, 3] ADH9I[2, 3]) +
> ADHS0[2, 3] ADHSL[3, 3)) (s[4])

JACRS2{S) -> (ADHOO{3, 3} JACR47{4) - JACR47(6] Sin[phil[1i]))




> (betal7))’ + (ADHOO[3, 3) JACR46[4] - JACR46[6] Sinlphilt1]])

> (delta[31)? + (ADNSO[3, 3) Sinl[phi{i1]] - ADHSL[3, 3} Sin{phif{1]1])
> (s[4])"

JACRS2(6) ~> (~(ADH9O[2, 3] JACR4T[41) + JACR47(S) Sin[philt1ll)

> (betaf?7])? + (-(ADN90{2, 3) JACR46[4]) + IACR46{5) Sinfphiftt]D

> (deltal3])’ « (-(ADH90(2, 3) Sin{phifif}]) +

> ADHS1([2, 3] Sin[phi{11]}) (s[4})’

JACRS3[4] -> (ADHOL[3, 3] Cos[phi{10]] - ADNS1[2, 3) Sinlphi(10]]

> (phi{t1])? + (-(ADHSO[3, 3] ADHS1(2, 3}) + ADHSO[2, 3] ADHOL[3, 3])
> (phi[12)»

JACRS3[S] -> ~(ADH91[3, 3] (phi[101)*) +

> Sin{phi[10]] Sinlphili1)} C(phil11])> «

> (ADMSO[3, 3] Sin[phi(i1]) - ADH9L(3, 3] Sinfphiliil]) (phi[12])’
JACRS3[61 -> ADHS1[2, 3] (phil10])* -

> Cos[phi[10])] Siniphil1t]}] (phift1])> +

> (-(ADM90{2, 3] Sinlphil1111) + apH9t{2, 3] Sinlphil11]1]) (phil[12))
JACRS4[1] -> (ADHSS[3, t} Cos[phi[10}) - ADHSS{2, t] Sin{phi[t0]])

> (phiff11)* + (-(ADH9O[3, 3] ADHOS[2, 1]) + ADHOO[2, 31 ADNIS(3, 1])
> (phil12])°

JACRS4{2] -> -(ADH9S[3, 1] (phi[10])*) +

> APR92{t, 1} Sin[phi{101) (phifiL])’ +

> (ADH9O[3, 3] ADH92(1, {1 - ADHOS[3, (] Sin[phil1111) (phifi2})’
JACRS4[3] -> ADHOS[2, 1] (phi[10])* -

> ADH92[f, 1] Cos[phili0]] (philti])’ +

> (-(ADHSO[2, 3) ADH92{1, t]> + ADH9S[2, 1] Sin{phil111]) (phi[t2])*
JACRS4[4] -> (-(ADHSSI3, 1] JACRA7[S1) + ADROS[2, 1] JACR47[6])

> (betal7])® + (-(ADHSS[3, 1] JACR46(S]) + ADHOS[2, 1) JACR46[6])

> (delta[3})? + (Cos[phi[10]] JACR46[6] - JACRE6[S] Sin(phi[10}}))

> (phif11})? + (~(ADHOO[3, 3] JACR46[5)) + ADH9O[2, 3} JACR46[6])

> (phil12])’

JACRS4{5] -> (ADHSS[3, 1] JACRA7[4] - ADH92[1, 1] JACR47[6]) (betal7])* +
> (ADH95[3, 1} JACR46[4] - ADHO2{1, 1] JACR46[6]) (delta[31)* -

> JACR46[6] (phil[10])* + JACR46(4) Sinlphifto]] (philte])® +

> (ADHSO[3, 3] JACR46(4] - JACR46[6] Sinlphil11])) (phil12])

JACRS4[6] -> (-(ADHSS[2, 1] JACR47[4]) + ADH92{l, 1) JACR4T(5]

> (beta{7]))? + (-(ADH95{2, 1} JACR46[4]) + ADHO2[f, 1] JACR46(S]

> (deltaf3])? + JACR46[S) (phi[10])® -

> Coalphi[10]] JACR46[4) (phili1])’ +

> (~(ADH90{2, 3] JACR46[4]) + JACR46{S) Sin[phil11}1) (phil12])*
JACRSS{1] > (-(ADHOS[3, 1] ADH96[2, 1)) + ADHSS[2, {] ADHO6I3, 1}

> (delta[3})* + (ADH96{3, 1] Cos{phi[10]] - ADH96[2, 1) Sin{phi[10]])
> (phil111>* + (~(ADH9O[3, 3] ADH96[2, 11) + ADHSO[2, 3] ADH96([3, 1)
> (phil12))’

JACRSS{2) -> (ADHS2[1, 1] ADH9S[3, 1] - ADH92{1, 1) ADH96(3, 1})

> (deltal3]1)* - ADHOS[3, 1] (philto])’ «

> ADH92[1, 1] Sin(phi[101] (philiil)* ¢

> (ADHS0{3, 3] ADHS2[f, 1] - ADH96{3, t} Sin[phil1t]]) (phift2])’
JACRSS[3] -> (-(ADR92(1, 1] ADHS5{2, t1) + ADHO2[{, 1] ADH96[2, 1]

> (deltaf3])? + ADH9S[2, 1] (phil10])* -

> ADHS2[1, 1] Cos[phif{0]] (phi[i1))’ *

> (~(ADH90[2, 3] ADH92[1, 11) + ADHO6(2, 1) Sinlphil[1{]]) (phil12])*
JACRSS[4] -> (~(ADH96[3, 1] JACRAT{S]) + ADH96[3, 11 JACR47[6]

> (beta(7]1)? + (-(ADHOS[3, 1] JACR47[5]1) + ADHSS[2, 1] JACR47[6])
> (delta{3])* + (Cosz[phil[10]] JACR47{6] - JACR47{S} Sin[phi[{0]}}
> (phili11)* + (-(ADHSO[3, 3] JACR47[S]) + ADHOO[2, 3] JACRAT[6])

> (phift2])*
JACRSS[S] => (ADH96{3, 1] JACR47[4] - ADH92[{, 1] JACR47[6]1) (beral7])’ +
> (ADH9S[3, 1] JACR47[4] - ADH92[1, 1) JACR47[6]) (delta[a])® -

> JACR47(6] (phi[10]1)’ + JACR4T[4] Sin[phi{10]] (phi(i11)> +

> (ADHSO[3, 3] JACR47[4] - JACR47[6] Sin(phil11]1) (phift2])’
JACRSS[6] -> (~(ADN96{2, 1] JACRAT[41) + ADH92[f, 1] JACR47[S])

> (beta[7])> + (~(ADH95[2, 1) JACR47[4)) + ADH92{{, {] JACR47[S])
> (deltaf3))* + JACR4T[5] (phi[101)’ -

> Coz[phi[10]) JACRA7{4] (phi[i1])’ +

> (-(ADHSO[2, 3} JACRAT[4]) + JACR4T[S] Sin(philft]]) (phili2])
JACRS6[1] -> JACRSS{1] (betal7]1)® + JACR54[1] (delta[3])’ +

> JACRs2[1] (phi[12])’

JACRS6{2] -> JACRSS[2] (beta[7])’ + JACR54[2] (delta{3])’ +

> JACRS1{2} (phi[t{])> + JACRS2[2) (phi(i2]))’

JACRS6[3] -> JACRSS[3] (betalT1)’ + JACR54[3] (delta[3])’ +

> JACRSI[3] (philf1]) + JACRS2[3] (phi[i2])®

JACR56[4) -> JACRSS[4] (botaf7])® + JACR54[4] (deltal3])’ +

> JACRS1[4) (phili1))* + JACRS2E4] (phi{t2])’ + JACRS3[4] (s[4])
JACRS6[S] ~> JACRS5(5] (betal7])® + JACR54[5] (delta{3])' +

> JACRSO{5) (phi[101)* + JACRSI[5] (phi[t1])’ + JACRS2([5] (phil12])* +
> JACRS3{5) (a[4])’

JACRSG[6] -> JACRSS[6] (bataf7])’ + JACRS4[6] (deltal3]1)’ +

> JACRSO[6] (phi[10])* + JACRS1[6] (phil11])* + JACR52{6) (phi[f2])’ +
> JACRS3[6] (s[4]1)’

(betal[7])?? ->

> (~(ADH91[3, 3] JACRS6[S]) + ADHOf[2, 3] JACRS6[6) -

> ADH91(3, 3] JACR46[S] (deltaf3])'’ +

> ADHS1{2, 3] JACR46[6] (deltaf3])’’) /

> (ADHS1(3, 3] JACR47[S] - ADHO1[2, 3] JACR47(6])

(s[43)** => (-JACRS6[5] ~ JACRAT[S] (beta[7])’’ -

> JACR46[5] (dalta{3]1)’*) / ADHSI[2, 3
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(betaf8])? ~>
> =((-JACRS6[4] - JACR47[4] (beta[71)'’ - IACR46{4] (delta[3])’’ -
> Sin{phi{t1]) (s{4])’") / a2)
(phil11])* =»
(-(ADHS0[3, 3] JACRS6[2]) + ADH90[2, 3] JACRS6{3] -
ADHSO[3, 3] ADH96(2, 1} (beta{7])*> +
ADH90(2, 3) ADHS6[3, {1 (beta[7])** -
ADHOO[3, 3] ADHOS[2, {) (delta[3])’' +
ADH90[2, 3] ADHOS[3, 1] (delta[3])’') /
(ADM90[3, 3] Cos[philt0]]l - ADH90{2, 3] Sinlphi[101D)
(phift2]>r ->
> (-JACRS6[2] - ADN96[2, 1] (beta[T])*’ - ADHSS5[2, 1] (delta(3))’’ -
> Cos(phi[101] (phil[11])’’) / ADHSO[2, 3]
(phi[101)>’ =>
> -JACRS6{t} - ADMS2{f, 1] (beta[71)’’ - ADH92[{, 1] (deltafd})>’ -
> Sin[phil(1]) (phi(12])*®
ADHOB[L, 41 -> =g + 1t
ADHOB[1, 4]
beta[6] -> ArcSin{------===-- 1
al
ADH104[2, 4] -> b1 Cos{delta[2]]
ADHI02[2, 4] -> h2 + ADHIO4[2, 4]
ADHIO4[3, 4] -> bl Sin[deltaf2]]
ADH10112, 4] -> ADH{02{2, 4] Cos[delta[3]] - ADH104[3, 4] Sin[delta[3]]
ADH105[3, 4] -> ai Cos[beta[6]])
ADH99[2, 4] -> -12 - 14 + ADH1D1(2, 4]
ADRO9[2, 4]
beta[5] -> -ArcSin[---=-=mesans 1
ADHI0S([3, 4]
ADH101[3, 4] -> ADH104[3, 4] Cosldelta[3]] + ADH102[2, 4] Sinldeltaf3l]
ADH100[3, 4] -> -h3 + ADH10t([3, 4] + s(4]
ADH10S(f, 4) -> al Sin[beta[6]]
ADH106[2, 4] -> -(ADH10S[3, 4] Sin[betalS]])
ADH106{3, 4] -> ADR10S[3, 4] Cos[beta{5}]

>
>
>
>
>
>

2
a[3] -> (-2 ADH106(3, 4) ¢ Sqrt[4 ADHIO6{3, 4] -
2 2 2
> 4 (-ADH1OO[3, 4] + ADHIOS[1, 4] + ADH106[2, 4] +
2 2 2
> ADHI06{3, 41 - ADR9S(f, 41 - ADHOS[2, 41 )]} / 2

ADH114[2, £] -> Sin[beta[5]] Sinfbeta(6]])
ADH114[3, 1] => -(Cos[bata{5]) Sinlbetal6l])
ADHIO7(2, {] ->

> ADH114{3, 1} (Cos{delta[3]] Sin[deltaf2]] +

> Cos[delta[2]] Sin[delta[3]]) «
> ADH114[2, 1] (Cos[delta(2]] Cos[deltal[3]] -
> Sin[deltaf2}] Sin[delta[3]])

phi[9] -> -3.14159 - ArcTan[ADH107{2, 1]} Sec[betal6]]1]
ADHLD7[3, 11 ->
>  ADHI14(2, 1) (-(Cos[delta[3]] Sinldelta[2]D) -

> Cos(deltal2]] Sinfdeltal31]) +
> ADHi14[3, 1] (Cos[delta{2]] Cos[delta[3]] -
> Sin[delta(2]] Sin{deltal3]]}

ADH11S(1, 1] -> Cos[beta{6]] Cos{phi[911 - ADN107(2, {] Sinfphil9}
ADH115(1, 1]
phi[8] ~> ArcTan{ f
2 2
ADH107([3, {] + ADHi1S[i, 1]
ADHIO7[3, 1]

> ]

2 2
ADRLOT[3, 1) + ADH11S{1, 1]
ADHIOT[2, 2] ->
> Sin[beta[S1} (Cos[delta[3]] Sinfdelta[2]] +

> Cosl[deltal2]] Sinldeltal3]]) +
> Cos[beta[5]) (Cos(delta{2]) Cosfdelta{3]} -
> Sin[delta{2]} Sin[delta(3]])

ADR1OT(3, 2] >
>  CosfbetalS]] (-(Cos{delta[3]] Sin[deltaf2]]} -

> Cos[delta[2]] Sin[deltaf3]]) «
> Sinlbeta[5])) (Cos[dalta(2}] Cos[daltal3]] -
> Sin[delta[2]] Sinldelta[3]])

ADHALT(3, 2] -> Sin{phi{8)} Sin{phi{9}]

ADH116{2, 2) -> ADH107{2, 2] Coslphif9]]

ADHL16(3, 2] -> ADH107{2, 2] ADH1£7(3, 2] + ADKIO7[3, 2] Cos[phils)]
phil7] => -ArcTan{ADEL16(2, 21, ADHI16[3, 2]]

ADH126[3, 4) -> h3 - s[4]

ADHI27(2, 4] -> 12 + 14

ADH109[2, 4] => -(h2 Cosldelta{2]])

ApHi30[2, 4] ->

>  ADH127{2, 4] Cos[delta[3]] + ADH126[3, 4] Sinldelta[3]] +
> s[3] Sin[delta[3]]

ADHI30[3, 4] ->

>  ADHi26(3, 4) Cosldelta{3]] + Cos[delta(3]] s[3) -

> ADH127[2, 4] Sin[delta[3}]

ADH108[2, 4] => -bt + ADNLO9[2, 4]




ADH109(3, 4} -> h2 Sin(delta[2]}

ADHi29[1, 4] -> g - 11

ADH129(2, 41 ->

>  -bi + ADH109[2, 41 + ADH130[2, 4] Cosfdelta[2]1] +

> ADH130[3, 4] Sin(delta[2}}

ADH{29(3, 4] ->

>  ADH109[3, 4] ¢ ADHi30[3, 4] Cos(delta{2]] - ADH130[2, 4] Sin[delta[2])
ADHL17[1, 2} -> -(Cos[phi[8]] Sin[phil91})

ADHLL7{3, 1) -> ~(Cos[phil9}} Sin[phil8}])

ADH119[2, 4] -> -(bl (Cosl[phi{7]] Coalphi[9]] - ADH117[3, 2] Sin[phi[711))
ADRL1S(3, 4] -> ~(bl (ADR117(3, 2] Coslphi{7]] + Cos[phil9}] Sinlphi(7])))
ADH122{2, 3] -> Cosl[delta[3}] Sin[delta{2]] + Cos{delta[2]} Sin[deltal3]]
ADH122(3, 3] -> Cos(deltal2]] Cosldelta{3)] - Sin(delta[2}] Sin[delta{3]]
ADHi24{2, 3] -> Cos[delta[3]] Sinldeltal2]] + Cosl[delta[2}] Sinldelta(3)]
ADH{24(3, 3] -> Cosldeltaf2]] Cos[deltal3]] - Sinfdelta[2]] Sin[delta(3])
ADHL19(1, 4] -> -(bi ADRELT[L, 2]

ADRI(7{1, 1] -> Cos[phil8}] Coslphil3]]

ApRi20(1, 4] ->

> g ADHL17(1, 1] + ADH108{2, 4] ADHLi7[1, 2] + ADH109(3, 4] Sin(phil8]
ADH120(2, 4] ->

>  ~(ADH103(3, 4] Cosfphi(8]] Sin[phi[71D) +

> ADH108[2, 4] (Cosiphil7]] Coslphil9}] - ADHL{7[3, 2] Sin[phil7]]) +
> g (-(ADRLi7{3, 1] Sin[phil71]) + Cos[phi(7}] Sinlphil9l])

ADH120[3, 4] ~>

> ADH109[3, 4] Cozfphil7]] Cos(philal} +

> ADH108[2, 4] (ADH1i7[3, 2] Cos[phil7]] ¢ Cos(phi[91] Sin[phi[7]1) +
> g (ADH117{3, 1] Co=z[phi{71] ¢ Sin{phi[7]] Sin(phi{9]])

ADH128{1L, 4] ->

S ADHIA7(i, 1) ADH129[1, 41 + ADMLi7(i, 2] ADHI29(2, 4] +

> ADH{129[3, 4] Sin[phi{sll

ADH128(2, 4] ->

>  ~(ADH129(3, 4] Cosl[phif{8]l]l Sin[phi{7I]} +

> ADH129[2, 4] (Cos(phi{7]] Cosiphif9]] - ADH{17([3, 2] Sin[phi(7}]) ¢
> ADH129[1, 41 (-(ADRL17{3, 1] Sin{phi[7]]) + Cos[phil7]] Sin{phi[9]])
ADHI28(3, 4] ->

> ADH129[3, 4) Cos[phif71] Cosl[phi(sl] +

> ADH129[2, 4) (ADHL17{3, 2] Cos{phil7)] + Cos[phi{9]] Sin[phil71]) +
> ADH129[1, 4] (ADHL1T{3, 1] Cos{phi[7]] + Sin[phi(71] Sin{phi[9]})
ADH{18(2, 3) -> -(Cos[phi{8]] Sinlphil7]])

ADH118(3, 3] -> Cos[phi{7]] Coslphi{s])

ADML1S(2, 1] -> -(ADHL17[3, 1] Sin(phi[7}]) + Cos[phif7]] Sin(phil9]]
ADHL19[3, 1} ~> ADH117(3, 1) Coalphi[7)] + Sinlphi(7}] Sinfphi[8}]
ADH120[2, 1} -> -(ADHI17([3, 1} Sin(phif711) + Cos{phi[7]] Sin[phi{9]]
ADHL20[3, {] -> ADH117[3, 1) Coslphi[7]] + Sinfphi[7]] Sinlphi[9]]
ADH121[1, 3] ~> ADHi17(1, 2} ADHi22(2, 3] + ADH122[3, 3] Sin[phi{8]}
ADHi21{3, 3] ~>

> -(ADHi22(3, 3] Cosl[phi{8)) Sin[phi[7]1]) +

> ADHi22[2, 3] (Cos[phif7]] Coslphi(9)) - ADMII7[3, 2] Sin[phi[71])
ADHI21(3, 3] ->

> ADH122(3, 3] Cos[phi{71] Coslphi[8]) +

> ADH122[2, 3] (ADH117{3, 2] Cos(phi[71} + Cos[phil91] Sin{phil7]D}
ADH123[1, 3] -> ADH117[1, 2] ADHi24[2, 3) + ADHi24(3, 3] Sin{phi[€]
ADH123{2, 3] ->

> -(ADH{24[3, 3] Cos{phi[8]) Sin(phi[7I]) +

> ADHiI24[2, 3] (Cos{phil7]} Cos[phil9}] - ADH117[3, 2] Sin[phil7]])
ADH123(3, 3] ->

> ADR124[3, 3] Cos[phil[7]] Cos(phif8]] +

> ADH124[2, 3] (ADH117([3, 2] Cos[phi[?]] + Cos{phi{9]} Sinfphi[7)])
ADH128[2, t] -> -(ADHA47(3, 1] Sinlphil71]) + Cos{phi{71} Sin(phi[s1}
ADR128[3, L] -> ADH117[3, 1] Cosl[phi[7}] + Sialphil7]] Sinlphils]]
JACR61T4] -> ADN119(2, 4] ADH119(3, 1] - ADM1iS[2, i) ADHi19[3, 4]
JACR61(5) -> ~(ADHL19[1, 4] ADH119(3, 1]) + ADH({7[f, 1] ADH1{9(3, 4]
JACRE1{6] ~> ADH119(1, 4) ADH11S[2, 1] ~ ADH117[1, 1] ADR119[2, 4]
JACR62[4] -> ADM{20(2, 4] ADH120(3, 1) - ADH120[2, 1] ADH120[3, 4]
JACR62[5] -> -(ADH120[1, 4] ABH120(3, 1]) + ADR{17([1, L} ADH120(3, 4]
JACR62[6] ~> ADH120{1, 4] ADH130(2, 1] - ADH117[1, 1] ADH{20(2, 4]
JACRGS[4] -> ADHi28[2, 4] ADH128(3, 1} - ADHi28[2, 1) ADH{28[3, 4]

JACRES[5] -> -(ADH128{1, 4) ADH128[3, t1) + ADRL17[1, 1] ADHi28[3, 4]
JACRES[6] -> ADHi28[i, 4] ADHI28[2, 1] - ADHU(T[{, (] ADHi28(2, 4]
(beta[5])® -> (ADH{23[3, 3] JACR61[S]) (delta[2])’ -

> ADH123[2, 3) JACR61[6] (deltal2])' +

> ADH123[3, 3] JACR62(S] (deltald])’ -

> ADH12312, 3] JACR62([6] (delta{3])’ -

> ADH121(3, 3] ADH123[2, 3] (s(4])’ +

> ADH121(2, 3] ADHL23[3, 3] (s[4]D") /

> (ADH123[3, 3] JACR6S[S] - ADH123[2, 3] JACRGS{6])

(2(3])* => (~(JACR65[5] (beta[§])') + JACR61[S] (delta[2])’ +

> JACR62[S] (deltal3])* + ADHI21[2, 3] (s{4])*) / ADH123[2, 3)
(beta(6]))? => (~(JACRSS[4] (beta[5])*) + JACR61{4] (delta[2])’ +

> JACR62[4] (deltal3))’ - ADR123[1, 3) (s[3])° + ADHi21[t, 3] (s[4])*
> )/ at

(phil8))* -> (~(ADHL18[3, 3] ADH128([2, 1} (beta(5])*) +

> ADH1t8[2, 3] ADH128(3, 1} (beta[5])’ - ADH{18[3, 3] (beta[6])* +
> ADHL18[3, 3) ADH119{2, 1) (delta(2])® -

> ADH118[2, 3] ADH119(3, 1) (delta[2])* +

> ADH118(3, 3] ADH120[2, 1] (delta{3])* -
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> ADH{18(2, 3] ADH120{3, 1] (delta[3])?) /

> (ADH(18[3, 3} Cos[phi(7]1] - ADH118(2, 3} Sinlphi(7]])

(phils]1)* -> (-(ADH138[2, 1) (bata[5])*) - (betal6])’

> ADH119(2, 1] (deltal21)® + ADH{20[2, 1] (delta[3])' -

> Cosl[phil7]} (phi[e])*) / ADH1i8[2, 3}

(phi{71)* -> ~(ADHL17[1, 1] (bata(51)?) + ADH{17[1, 1] (delta[2])* +

> ADH117(f, 1] (delta{3])’ - Sin[phil8]} (phil9])’

JACR66(6) -> al (beta[6])*

JACRSB(S) -> ~(JACRSS[6] (beta[S]}?) + JACRS1[6) (delta{2])’ +

> JACR62{6] (delta[3])> - ADHiI23{3, 3] (s[3])’ + ADH121(3, 3] (s{4])’
JACREB(6) -> JACR6S[S] (beta[5]1)’ - JACR61[5] (delta(2])’ -

> JACR62(S] (delta[3])’ + ADHI33[2, 3] (s[3]1)* - ADHi21(2, 3) (s{4])*
JACRE9[2]) -> -(Sin(phi[71] (phil71)?)

JACR69[3) -> Cos[phil7]1] (phil7])’

JACR68[4} -> (Coslphi[7]) JACRES([6] - JACR65(S) Sinl{phif{71]) (beta[5]1)* -
> (Cos[phil7]] JACR6([6) - JACR61{S] Sin{phil7]1]) (deltal2])* -

> (Cos{phi[7]] JACR62[6] ~ JACR62(S] Sin[phi[71]) (delta[3])' +

> (ADH123[3, 3] Cos[phi[7]] - ADHi23[2, 3] Sin{phi[7]1]) (s[3])’ -

> (ADH121[3, 3] Cos{phi[7]] - ADHL2£[2, 3] Sin(phil71]) (s[4])’
JACRES[5] -> JACR6S[4] Sin[phil7}] (betaS])' -

> JACRSL[4] Sinl[phi(7]] (deltal2])’ ~

> JAce62[4] Sinfphil7)) (deltal3})’ +

> ADH123[t, 3] Sinlphi[7]) (s(31)’ - ADHi2((1, 3) Sinfphi{7]] (e[4])*
JACR69[6] -> -(Cos{phi[7]] JACRES[4] (beta[5])*) +

> Coslphi{7]] JACRG61[4] (delta[a])? ¢

> Coa[phi{7]] JACR62[4] (delta[3])’ -

> ADH123[1, 3] Coz[phi{7}] (s[31)’ + ADH{21[1, 3] Cos{phil7]] (s[4])’
JACRTO[1] -> (ADH{18[3, 3] Cos{phi[7]] - ADHii8[2, 3] Sin(phi[7}D)

> (phi(8])?

JACR7O[2] -> ~(ADH118[3, 3] (phi[7]1)?) + Sin[phif7]] Sinl[phi[8]) (phi[8})*
JACRTO[3] -> ADH{18[3, 3] (phil[7])? - Cos{phi[71] Sinlphi[8]} (phi[8))*
JACRTO[4] -> (-(ADHi18{3, 3] JACR6S[S]) + ADRL18(2, 3] JACR6S[6])

> (bata[S})? - (~(ADRE{8(3, 3] JACR61[51) + ADR{{8[2, 3] JACR61[6])
> (de1ta[2])’ - (-(ADR{18[3, 3] JACR62[51) + ADH{18B[2, 3] JACR62{6])
> (delta[31)' + (-(ADH118[3, 3] ADHi23(2, 3]) +

> ADH118(2, 3] ADH{23[3, 31) (s[3])* -

> (-(ADH{18([3, 3] ADHi21({2, 31) + ADH118(2, 3] ADH121[3, 3]) (a(4))’
JACRTO(S] -> (ADH118{3, 31 JACRES[4] - JACR65[6] <in[phi[8}])

> (beta(5])* - (ADH{18(3, 3] JACR61[4] - JACR61(6] Sin[phi{8]1)

> (delta[2])® - (ADH118[3, 3] JACR62({4] - JACR62[6] Sin[phi{e]])

> (delta[3})’ + (ADH118[3, 3] ADH{23[1, 3] -

> ADH123[3, 3] Sin[phi(8]]}) (2[3])* -

> (ADH118[3, 3] ADHL21[{, 3] - ADR{24[3, 3] Sin[phi[8]1D) (s(4])*
JACR7O[6] -> (-(ADH{18[2, 3] JACR6S[4]) + JACR6S[S] Sin[phi{8]]>

> (bata[5])’ ~ (-(ADH118[2, 3] JACR61[4)) + JACR61[S] Sin(phil[811)

> (delta[2])’ - (-(ADH118[2, 3] JACR62[4]) + IACR62[S] Sin(phile]l}
> (delta[3]1)* + (-(ADH118[2, 3] ADHi23[t, 3]) +

> ADR123(2, 3] Sin(phif8]]) (s[3])’ -

> (-(ADR{18[2, 3] ADHi21[t, 3)) + ADH121{2, 3} Sin[phil8]1]) (al4D)*
JACR7A(L) -> (ADH119(3, 1) Cos{phi[7]] - ADHL1S[2, 1] Sin(phil7]]

> (phile])’ « (-(ADHLL8[3, 3] ADHi{9[2, 1) +

> ADH118[2, 3} ADKi19[3, t]) (phi[91)’

JACRTA[2] -> ~CADHI19(3, 1] (phi[71)) +

> ADRL17[1, () Sin{phi[7]] (phile])’ +

> (ADH{17[f, 1] ADH1t8(3, 3] - ADH{1S[3, 1] Sin[phi[8]1) (phi[s])*
JACRTL(3] -> ADHi19[2, 11 (phi[7])® -

> ADHU17[1, 1] Cos(phi(7]] (phil8])’ +

> (-(ADRL17[1, 1] APHI18[2, 3]) + ADH11S[2, 1] Sin{phi[81]) (phi[s])’
JACRTL[4] -> (~CADH11S(3, 1] JACRES[S]1) + ADM{1S[2, 1] JACRES[6])

> (beta[5])* - (-(ADH119[3, 1] JACR6L[S]) + ADH119(2, 1} JAcR61{s])
> (delta[2])* - (-(ADH11S[3, 1] JACR62[S]) + ADH{1S[2, f] JACR62[6])
> (deltaf3]1)" + (Cos[phi[71] JACR6{[6] - JACR61[5] Sin[phi[71])

> (phi[8]1)’ + (~(ADHL18[3, 3] JACR6L[S)) + ADH{18{2, 3] JACR61[6])

> (phi[91) + (~(ADHL19[3, L] ADH123[2, 3]) +

> ADH119(2, 1] ADH123[3, 31) (s[3])’ -

> (-(ADH119([3, 1] ABR{21(2, 31> + ADH118{2, 1] ADHI21(3, 3]) (s[4])’
JACATA[S] -> (ADH119(3, 1] JACR65(4} - ADHi17[i, 1] JACRES[S])

> (beta[S])* - (ADHL19{3, 1] JACR61[4] - ADHI17{1, 1] JACR61{6))

> (delta(2])’ - (ADH11S[3, 1] JACR62(4] - ADH{17[1, 1} JACR62[6})

> (delta[3])* - JACR61{6] (phi[7])’ +

> JACR61[4] Sin[phi[7]) (phi[8])' +

>  (ADH118[3, 3) JACRG([4] - JACR6L{6] Sin{phi(8]1) (phi(s])® +

> (ADH113[3, 1) ADH123[1, 31 - ADR{A7[1, 1) ADH123[3, 31) (s[3])’ -

> (ADHE19([3, (] ADHL2t[{, 3] - ADHL{7({1, 1] ADRL2([3, 31) (s(4])’
JACRTL[6) => (-(ADH119{2, 1] JACRES{4]) + ADHLI7{L, 1] JACR6S[SD)

> (beta[51) - (-(ADH119(2, 1] JACR61[4]) + ADH{17{1, t] JACR6L[5])
> (delta[2])' - (-(ADH119(2, 1] JACR62[4]) + ADH{17({, 1} JACR62([5))
> (deltal3]) + JACR61(5) (phi(7))’ ~

>  Cos(phi[7)] JACR6L{4) (phil8])* +

> (~(ADH{18[2, 3] JACR61[4]) + IACR61[5] Sin[phi(8)1) (phi[SD)* +

> (-(ADH$19(2, 1] ADH23[1, 3]) + ADHLL7{f, 1] ADH123[2, 3]} (s3]}’ -
> (-(ADH£19[2, {) ADH{21[1, 31) + ADH117[1, 1] ADHi2([2, 3]) (a{4})’
JACRT2[1] -> -((-(ADH11S[3, 1] ADH120[2, 1)) + ADH119[2, {1 ADHL20{3, 1})
> (delta[2])*) + (ADH120[3, 1] Cos(phi[7]] -

> ADH120[2, 1) Sin[phi(7))) (phife])’

> (~(ADH{18[3, 3] ADH120[2, {]) ¢ ADH118[2, 3] ADH120(3, 11) (phi[9])®




JACRT2[2] -> -((ADHL{7{{, 1] ADH119[3, 1] - ADH{17[f, 1] ADH120(3, t])

> (deltal21)?) - ADHI20[3, 1] (phil7])* +

> ADHA7[i, 11 Sin[phi(71] (phil8])* +

> (ABRL17[1, 1] ADH118(3, 3] - ADH{20(3, t} Sin[phil81]) (phi[s])
JACR72[3] -> -((-~(ADWL17[1, 1] ADH{1S{2, 11) + ADRI{7(1, 1] ADH120(2, {])
> (deltal2])*) + ADHI20[2, 1] (phi[7]1)® -

> ADHLA7[i, 1) Cos[phi{7]] (phi[8])®

> (-(ADHL17{f, 1) ADHi18[2, 31) + ADH{20(2, t] Sin{phi[81)) (phifs])’
JACR72{4] -> (-(ADH120[3, 1} JACR6S[S]) + ADN120[2, 1) JACRSS(6]

> (betal5))' - (~(ADH119{3, {] JACR62{S]) + ADH{19[2, 1] JACR62{6)

> (doltal2])? - (~(ADH120[3, 1] JACR62(S1) + ADH120[2, L] JACR62[61)
> (dolta[3])? + (Cos[phi[7]] JACR62[6] - JACR62[5] Sin{phi(7]])

> (phil8])’ + (-(ADH118{3, 3) JACR62[5]) + ADHi(£[2, 3] JACR62[6])

> (phil9])* + (-(ADH120(3, {] ADH{23{2, 3}) +

> ADH120(2, 1] ADH123[3, 3D (s{3]) -

> (-(ADH120[3, 1] ADHI21[2, 3]) + ADR{20[2, 1} ADMI21[3, 3]) (sf4])°
JACR72{S] -> (ADH{20[3, 1} JACR6S[4] - ADH{17{1, {] JACRES[6])

> (betal51)* - (ADHL1S{3, 1} JACRS2[4) - ADH117[f, () IACR62(6])

> (daltal2])' - (ADH120({3, t] JACRS2[4] - ADN{17[{, ] JACR62{6])

> (deltal3])> ~ JACR62[6] (phil71)* +

> JACR62(4) Sin[phi[7}] (phile])’ +

> (ADH{18[3, 3] JACR62{4] - JACR62[6] Sin[phil[8]]) (phi[9])’ «

> (ADH120[3, 1] ADH123(1, 3] ~ ADML17(1, (] ADH123[3, 3]) (s[3])' =

> (ADH12013, 1] ADHi21(1, 3] - ADH{17[f, 1] ADH{21{3, 3)) (s{4])’
JACR72{6] -> (~(ADR120[2, ] JACRSS[4]) + ADHL7({, 1} JACRSS[5}

> (beta[S])* - (~(ADH119(2, 1] JACR62{4)) + ADHIL7[L, 1] JACR62{5D)

> (deltal2])? = (~(ADH120[2, (] JACR62[4]) + ADHi17(1, {) JACR62(5])
> (delta{3])’ + JACR62[S] (phil7])’ -

> Cos[phil7]) JACR62[4] (phifs])’ +

> (-(ADRt18[2, 3] JACR62{4]) + JACR62{S} Sinlphil8]]) (phif9])* +

> (-(ADH120{2, 1] ADH123[1, 31) + ADHI17[i, 1] ADHi23[2, 3}) (s[3D)* -
> (~(ADHi20{2, 1] ADR121[1, 31) + ADHii7[1, 1) ADHi21[2, 31) (s[4])*
JACRT3(4] -> -((-(ADH{19[3, 1] ADHi21(2, 3]) + ADHL1S(2, {] ADHi21[3, 3])
> (deltal21)?) - (-(ADR120[3, {1 ADM21(3, 3]) +

> ADH120(2, 1] ADH121(3, 3)) (delta[3])® +

> (ADH121(3, 3] Cos[phi[7]] - ADH121[2, 3] Sin[phil711) (phif81)* ¢

> (-(ADH118[3, 3) ADHi21[2, 31) + ADHi18(2, 3] ADR121(3, 31) (phi[oD)’
JACRT3[5] -> -((APMI19{3, ] ADH{2i[1, 3} = ADHAL7[{, 1} ADMI21[3, 3D)

> (deltaf2])*) - (ADH120[3, (] ADHI21[1, 3] -

> ADHIAT(1, 1} ADHI21[3, 31) (deltal3])’ - ADH121[3, 3] (phi[7])! ¢
> ADHi21[1, 3] Sin[phil71] (phi[8])> +

> (ADBi18[3, 3] ADH121[1, 3] - ADHi21[3, 3] Sin(phi{811) (phil[9])’
JACR73[6] -> ~((~(ADH11S[2, 1} ADHi2i[f, 31) + ADHii7{i, 1] ADH12{[2, 3])
> (delta[2])7) - (-(ADH{20(2, 1] ADH121(1, 3]) +

> ADRIA7[1, 1] ADHi21[2, 3]) (delta(3])’ + ADH121{2, 3] (phil71)’ -
> ADH121[1, 3] Cos{phi(7]] (phile])’ +

> (-(ADHi18(2, 3] ADHi21[t, 31) + ADH{21[2, 3] Sin{phi[e]]) (phil9])’
JACRT4[4] ~> ~((~(ADH119(3, 1] ADH123[2, 31) + ADH1{9(2, 1] ADH123{3, 3])
> (delta{21)?) - (-(ADH120[3, 1] ADH123([2, 3]) +

> ADH{20[2, 1] ADH123(3, 3]) (delta[3])’ ¢

> (ADH123(3, 3] Cos[phil7]] - ADH123{2, 3] Sinlphil71]) (phile])’ +

> (-(ADN118[3, 3] ADH123[2, 3]) + ADHi18(2, 3] ADMi23[3, 3]) (phi[s])’
JACRT4[5] -> -((ADH119[3, ] ADWI23[f, 3] - ADHL17[{, 1] ADHi23(3, 3])

> (doltal2])?) - (ADH120(3, {] ADHI23[t, 3] -

> ADHLLTEL, 1] ADH123[3, 31) (deltaf3])’ - ADH{23[3, 3] (phi{7])* +
> ADH123[f, 3] Sin{phi[7)) (philel)’ +

> (ADH{18[3, 3] ADH123[1, 3] - ADHi23[3, 3] Sin[phi[8])) (phi[9))’
JACR74[6] -> -((-(ADHI1S[2, 1] ADML23[1, 3]) « ADR{47[f, L} ADH(23[2, 3])
> (deltal2])?) - (-(ADHi20[2, 1] ADH123[t, 3)) +

> ADHI17(1, 1] ADHi23[2, 31) (deltal3])* + ADHI23[2, 3) (phil71)* ~
> ADH{23[f, 3] Coslphi{7]] (phile])’ +

> (~(ADHii8{2, 3] ADHi23[i, 3]1) + ADHi23[2, 3] Sin{phile])) (phi[9])’
JACRTS[1] -> -((-(ADH119(3, 1] ADH128[2, 11) + ADH{19(2, 1) ADH128(3, L])
> (delta[2])?) - (-(ADH120{3, 1] ADH{28{2, t]) +

> ADH120({2, 1] ADH128(3, 11) (deltal3])* +

> (ADH128[3, 1] Cos[phif7]] - ADH122{2, 1] Sin[phi[7]]) (phils])’ +

> (-(ADHL{8[3, 3] ADH128{2, £])> + ADHL18[2, 3] ADHI28(3, 1) (phi[s])*
JACRTS[2] -> -((ADWLA7{L, 1] ADHI{S{3, t] - ADHL17[(, 1} ADM128[3, (]}

> (delta{2])*) - (ADRLL7[i, 1] ADH120(3, 1] -

> ADHi17[1, 1] ADH128[3, 1]) (delta[3]1)’ - ADH128(3, (] (phi[7])' ¢
> ADHALTIL, 1] Sinlphil7]] (phifa]>* +

> (ADH117{i, 1) ADH118[3, 3] - ADHI28{3, 11 Sin[phi[2]]) (phi[9))’
JACR7S[3] —> -((-(ADH117[1, ] ADH{t9[2, 1]) + ADHLiT[1, ] ADHiI28[2, t])
> (delta[2])?) - (~(ADHLI7LL, {] ADHI20{2, 1]) +

> ADHII7{1, 11 ADHI28[2, 1]) (deltal3])’ + ADH128(2, 1} (phi(7])? -
> ADHIL7[1, 1) Cos[phi[7]] (phi[e])* +

> (~(ADH117{1, 1] ADHI18{2, 3]} + ADH(28(2, (] Sin[phi{8]]) (phi(s))*
JACR7S[4] => (-(ADH128(3, 1] JACRE5(S}) + ADH{28[2, {1 JACR6S[6])

> (beta[5])* - (-(ADHL19(3, {] JACRGS[5]) + ADH{19[2, 1} JACR6S[6])
> (delta[2]1)* - (-(ADH120[3, 1] JACR6S[5]) + ADHi20[2, {] JACR65[6])
> (delta[3])* + (Cos[phi[7)] JACR6S[6] - JACRSS[S) Sinfphi[71])

> (phil€])* + (-(ADH{18[3, 3] JACR6S[S)) + ADH118[2, 3] JACRGS[6])

> (phils1)®

JACR7S{5] -> (ADH128[3, 1] JACR6S{4] - ADH{{7[i, (] JACR65(6])

> (beta[S])? - (ADH119(3, 1] JACRSS[4] - ADRI17[L, 1] JACR65(6])

> (deltaf2])® - (ADHI20(3, 1] JACRE5[4) - ADHII7{1, 1] JACRES[6])

120

> (delta[3])' - JACR65[6) (phi[7])* +
> JACR65[4] Sinlphi[7]] (phi(8))* +
> (ADR118{3, 3) JACR6S[4] - JACR65[6] Sin{phi[8]]) (phi[s})’
JACR75[6] > (~(ADHM128[2, 1] JACR65[4]) + ADH{17[i, () JACR65(S])
> (betafS])> - (~(ADN119[2, 1] JACRG5[4]1) + ADHLfT[{, 1] JACR65[5])
> {delta[2])* - (-(ADH120{2, 1] JACR65[4]) + ADMIL7[t, 1] JACRS5(SI)
> (delta[3])* + JACRE5{S] (phif?7])* -
> Cos(phil?7))} JACRS5([4] (phi{8])’ +
> (-(ADH118[2, 31 JACR65(4]) + JACR6S[S] Sin[phi[811) (phi[9])’
JACRET[6] ~> -(JACR66[6]) (betal6])’)
JACR76[1] -> JACR75(1] (betalS1)® - JACRTLI1] (delta[2])’ ~
> JACRT2(1] (deltaf3])* + JACR7O[{] (phifs])’
JACRT6(2] -> JACRTS[2] (beta[S])* - JACRT1[2] (delta[2]}’ -
> JACR72[2] (delta[3])’ « JACR69[2] (phi{8))' « JACR7O[2] (phi[9])?
JACRT6[3] -> JACR75[3] (bata[SI)® - JACRTL(3] (delta[2])* -
> JACRT2(3] (delta[3])’ + JACR69[3} (phi[8])’ + JACRTO[3] (phi[s])®
JACRT6[4] ~> JACR7S[4] (beta{S])’ - JACRTI[4] (deltaf2])® -
> JACRT2{4] (delta{31)* + JACR69[4] (phi(8])’ + JACR7O[4] (phi[9])' +
> JACRT4[4] (s(3))> - JACR73[4] (s[41)’
JACRT6(5] -> JACRTS[S] (beta[5])* - JACRT{[5] (delta{2])' -
> JACR72[5] (delta[3))’ + JACR6B[5] (phil71)' ¢ JACR6S[5] (phifs])’ +
> JACRTO{S] (phi[9])’ + JACRT4[5] (s[31)’ - JACR73[S] (s[4])’
JACRT6[6] => JACR7S[6] (beta[51)' ~ JACRTL[6] (deltal[2])’ -
> JACR72[6] (deltal[3])’ + JACRSBI6] (phi[7])* + JACR6S[6] (phi[8))’ +
> JACRTO[6] (phi[9])® + JACRT4[6] (s{3])* - JACR73[6] (s[4])'
(beta[S])?? ->
> (-(ADNi23[2, 3) JACR67[61) - ADH123[3, 3] JACR76(5] +
> ADH123(2, 3] JACR76[6] + ADH123[3, 3] JACR61{5) (delta[2])’® -
> ADHi23[2, 3] JACRSL[6] (delta{2])’’ +
> ADH123{3, 3] JACR62{§) (delta{3])’’ -
> ADHI23[2, 3] JACR62[6] (deltal3])'’ -
> ADHI21[3, 3] ADH123[2, 3] (sf4])? +
> ADH12102, 31 ADRt23[3, 3] (s[41)'*) /
> (ADH123(3, 3] JACR6S[5] - ADHi23[2, 3} JACRES[6])
(3f3])7* -> (-JACRT6[5] - JACRSS[5] (bera[S])'? +
> JACR6L[S] (deltal2])?? + JACR62[S] (dalta[3))?’ +
> ADH121[2, 3] (s[4]1)’*) / ADHi23(2, 3]
(beta[6])?! ->
> (-JACR76[4] - JACRGS[4] (beta[S1)*' + JACR61[4] (delta[2])'' +
> JACR62[4] (delta[3])? - ADH123[1, 3] (s[31)' «
> ADHIZ210L, 3) (s[4])**) / al
(phi[8])** -> (-(ADHL{8[3, 3} JACRT6{2]) + ADH{{8[2, 3] JACRT6[3] -
> ADH118(3, 3) ADH128(2, 1] (betaf51)'* +
> ADRL(8[2, 3] ADHI28(3, 1] (beta[S5])7> - ADH118{3, 3] (beta[6])’* +
> ADH118[3, 3] ADHi19[2, 1) (delta{2])’’ -
> ADH{18(2, 3] ADHi19(3, 1] (delta[2])'’ +
> ADHLI8(3, 3] ADH120(2, 1] (delta[3])’’ -
> ADRE1B(2, 3] ADHi20[3, 1] (delta[3])'?) /
> (ADRi18[3, 3] Cos[phi[7]1] -~ ADH{t&[2, 3] Sin[phi[7]1])
(phil91)?? -> (-JACRT6[2] - ADR{28[2, 1] (beta(S5))’* - (beta[6])’ +
> ADHI19[2, 1] (delta[21)** + ADH{20[2, {} (deltal3])’’ -
> Cos[phi[7]] (phi{81)'’) / ADHiig8[2, 3
(phi(7))** -> ~JACRTG[I] - ADHIL7[1, 1] (beta[S])’ +
> ADHUA7{1, t] (delta[2])'* + ADMIL7[{, 1] (delta[31)?’ -
> sinfphil8]] (phi[9])’
ADHL3((1, 4] => g - 11
ADHI3L[1, 4]
beta[2} -> ArcSin(-~ -1

a1
ADHI33[2, 4] -> -12 - 14
ADH134[2, 41 -> bl Cos[delta[1]]
ADH134[3, 41 -> bl Sin[delta[1]]
ADHI35(3, 4] -> al Cos[beta[2]]
ADH136(2, 4] ->
> ADHL33[2, 4] + ADH67(2, 4] + ADH134{2, 4] Cosldelta[3]] -
> ADHi34[3, 4] Sin{delta[3]]
ADR136(2, 4]
beta[i] => -ArcSin[--
ADH135(3, 4]
ADH133{3, 4] -> -h3 + s(4}
ADH131[2, 4] ->
> ADH133[2, 4] + ADH67[2, 4] + ADH134(2, 4] Cosldelta[3]] -
> ADHI3413, 4} Sinldeltaf3]
ADHI31(3, 4] =>
> ADH133[3, 4} + ADH67[3, 4] + ADH134[3, 4] Cosl[deltal3]] +
> ADH134[2, 4] Sinfdeltaf3]
ADHI35[1, 4] -> af Sin[beta[2]]
ADH137[2, 4] -> -(ADH135[3, 4] Sinl[betalt]l])
ADRL37[3, 4] => ADHI3S(3, 4] Cos(beta[1]]

]

2
s[1] => (-2 ADRI37(3, 4] + Sqrt{4 ADHI37[3, 4] -
2 2 2
> 4 (-ADHI3111, 4] - ADH131[2, 4] - ADHI31[3, 4] +
2 2 2
> ADHI3S5([1, 4] + ADRL37[2, 4] + ADH(37[3, 41 )1 / 2

ADN143[2, {] -> Sin[beta[1]] Sin{beta{2]]




ADH143[3, 1] -> -(Coslbeta[i]] Sinfbata[2])])
ADH139[2, 1] -> ADH143[2, 1] Cosldelta[3]] + ADH143[3, 1] Sin[deltaf3]]
ADH139[3, 1} -> ADH143(3, 1] Cosldelta[3]] - ADH143[2, 1] Sin[delta[3]]
ADH138[2, 1] -> ADHI39[2, 1] Cosl[delta[t]] + ADNI3S[3, 1] Sinldelta[t]]
phi[3) -> =3.14159 - ArcTan{ADH138[2, 1] Sec[beta[2]])
ADH144(1, 1) ~>
> Coslbeta[2]) CosEphi{3]] - ADH139(2, 1] Cos{delta{1]] Sin(phi{3]] -
>  ADH139[3, 1] Sin[delta(i]] Sin[phi{3]
ADH144[3, 1] -> ADH{39(3, 1] Cos[deltaft]] - ADH139(2, 1] Sinldeltaf{]]
ADHi44(4, 1]
phif2] -> Arctan[ N
2 2
ADH144(1, 1] + ADH144(3, 1)
ADH144(3, 1]

> ]

2 2

ADH{44[1, 1] + ADN144(3, (]

ADH139{2, 2] -> Cos[bata{{]] Cosl[delta{3]) + Sin[betal1}] Sin{delta[3]}
ADH139[3, 2] -> Cos[delta[3]] Sin[bata{t]l] - Cos[betali}] Sinfdeltaf2]]
ADH144[1, 2] -
> ~(ADH139[2, 2] Cos[deltal1]] Sin[phi[3l1D) -
> ADH139(3, 2) Sinl[deltal1]] Sin[phi(3])
ADH144[3, 2] -> ADHI39[3, 2] Cosldelta{11) - ADNI39[2, 2] Sinldelta[{]]
ADHI44(2, 2] ->
>  ADH139(2, 2] Cos[delta[1)] Cos[phi[3]] +
> ADH139(3, 2] Ces([phi[3]1] Sinl[delta[t]
ADH146(3, 2] -> ADH144[3, 2] Cos[phi[2}] - ADH144[i, 2) Sin{phi(2]]
phi[{] -> -ArcTan[ADHi44(2, 2], ADH146(3, 2]}
ADH158(3, 4] -> h3 ~ s[4]
ADHiS9{2, 4] -> 12 + 14
ADRi62[2, 4] ->
>  ADH159[2, 4] Cos(delta[3]] + ADHi158[3, 4] Sin{deltal3}} +
> af{1] Sinldelta(3]}
ADH162[3, 41 ->
>  ADH158[3, 4] Cos[deltal3]] + Cos{delta(3]] s[i] -
> ADH159[2, 4] Sinl[delta(3]]
ADH145(1, 4] -> b1 Sin[phi{3])
ADH145(2, 4] -> =(bi Cos[phil311)
ADH151(2, 4] -> ~(h2 Cos[delta(il])
ADHI51[3, 4] -> h2 Sin[deltall]]
ADHi6£(1, 4] -> ~g + 11
ADH161(2, 4] ->
>  =(h2 Cos{deltalil]) + ADMI62[2, 4] Cos[delta[1]] +
> ADH162(3, 4] Sin[delta{i]]
ADHI6L(3, 4] ->
>  ADH162(3, 4] Cos[deltalil] + h2 Sin{deltal[t]] -
> ADH162(2, 4] Sin[deltalil]
ADH{49(3, 4] -> ~(ADH145{1, 4] Sin[phif2]D)
ADB148[2, 4] -> ADH{4S[2, 4] Cosa(phil1]] - ADH149[3, 4] Sinlphil1]
ADH148(3, 4] -> ADN149[3, 4] Cos[phif1]] + ADH145[2, 4) Sinlphi{t])
ADH149{(, 2] -> -(Cos[phil[21] Sin[phil31])
ADH149{1, 4] -> ADH145[1, 4] Cos[phi[2]]
ADH149(3, 1] -> -(Cos[phil[3]] Sin[phil2]D)
ADH149[3, 2] -> Sinlphil2]] Sin[phi[3]]
ADHES4[2, 3] -> Cos[delta[3]] Sinldelta{1]] + Cosfdelta[1]] Sin[delta[3]]
ADH154[3, 3] -> Coa{delta[i1]l] Cosldelta[3]] - Sinldelta[t]] Sin[deltal3]]
ADHiS6[2, 3] -> Cos{delta[3]] Sinldelta[{]] + Cosldeltaft]] Sin[delta[3]]
ADH156[3, 3] =-> Cosldelta[i]] Cos[delta[3]] - Sin{delta[t]] Sin[delta[3]]
ADH148(1, 1] -> Cos{phi[2]] Cos{phi[3]}
ADH1SO[1, 41 ->
> -(g ADH149[f, 1) + ADH149[1, 4] + ADH149[f, 2] ADHISL[2, 4] ¢
> ADH151(3, 4] Sin[phi(2])
ADH150(2, 4] ->
>  ADH145(2, 4] Cos[phi{i)] - ADH149(3, 4] Sinlphilt]] -
> ADH1S1{3, 4] Cos[phif2]11 Sin[phi{1]] +
> ADN151[2, 4] (Cos(phi[1]] Cesl[phi[31] - ABHi49[3, 2] Sinlphil11]) -
> g (-(ADH149[3, 1] Sinfphi(1]]) + Coslphil1]} Sinlphi{31])
ADH150(3, 4] ->
>  ADH149(3, 4] Cos(phil1l] + ADHISL[3, 4] Cos[phi[t]] Cos{phil21] +
> ADH145{2, 4) Sinlphi{t]] +
> ADH151{2, 4] (ADH149[3, 2] Cos[philfl] + Cos[phi[31] Sinlphil11]) -
> g (ADH149[3, 1] Cos[phi{1l] + Sin{phi[1]] Sin{phil31D
ADHLSO[E, 4] ->
> ADH149(1, 4] + ADH149(1, 1] ADHL6L[t, 4] +
> ADH149[1, 2) ADH161{2, 4] + ADH161(3, 4] Sinlphi[2]]
ADH160(2, 4] ->
>  ADH145[2, 4] Cosl[phi[t]] - ADH149[3, 4] Sin[philt]] =
> ADH161[3, 4] Cos(phil2]) Sinlphif1]] ¢
> ADH161[2, 4] (Cos{phili)} Cos{phi[31] - ADH149(3, 2) Sinfphil1}1) +
> ADH161{1, 4] (-(ADM149(3, 1) Sinfphilt]11) + Coslphil1)] Sin[phi(3]]
ADH{60(3, 4) ->
>  ADH149[3, 4] Cos{phil1]] + ADHI6L[3, 4] Cos{phi[t]] Cos{phil2]] +
> ADHi4S5[2, 4) Sin{phi[1]] +
> ADH161[2, 4] (ADH149{3, 3] Cos[phil1)] + Cos[phi[3]] Sin{philt]D) +
>  ADHi61[1, 4] (ADH149[3, 1] Cosfphi{11) + Sinf{phi[1]] Sinlphil31D
ADH147[2, 3] -> -(Cos{phi[2]} Sin(phil{]])

w
VVVVVVVYVYYVYYVYY

ADHL47(3,
ADH148(2, 1] -
ADH148(3,
ADHISO[2, 1] -
ADHI50[3,
ADHLS3[1, 3} -
ADH1S3([2, 3] >

>  -(ADH1S4[3, 3] Cos[phil2]] Sin(philt]]) +

> ADHiS4[2, 3] (Cos[phi[L]]) Cos[phi[3]] ~ ADH149(3, 2] Sinfphil1]])
ADH1S3[3, 3] ->

>  ADHLS4[3, 3] Cos[phi[i]] Cos[phi[2]} ¢

> ADHIS4{2, 3} (ADH149[3, 2] Cos(phi{t]) + Coslphif3]] Sin{phil1]})
ADHISS[{, 3] -> ADHL4S[f, 2] ADH156[2, 3] + ADHIS6[3, 3] Sin[phi[2])
ADHIS5[2, 3] ->

> -(ADRtS6{3, 3] Cos[phil2l1 Sinlphi[1]]) +

> ADH156(2, 3] (Cos[phi{t]] Cos[phil{3}] - ADHi49(3, 2} Sin{phil1]])
ADHISS{3, 3] ->

> ADHIS6[3, 3] Cosfphi{t]} Cos[phi[2]] +

> ADMIS6{2, 3] (ADH14913, 2] Cos[philt]] + Cosfphi(3}} Sinlphi[1]])
ADHL60[2, 1] -> -(ADH{49{3, 1] Sin[phil1]}) + Cos{philil] Sin[phi{3]
ADHI60[3, 1] -> ADHI49(3, t] Cos[phi{i]] + Sinfphi[1]) Sin{phi(3]]

“
'
v

Cos[phifi]] Cosfphil2}]

~(ADH149[3, t] Sin[phift]]) + Cosl[phi[11] Sin(phi(3]]
ADH149(3, 1) Cos{phi[1]] * Sin{philt]} Sin[phif3]]
~(ADH149(3, i1 Sin[phif1]1) + Coslphi[1)) Sin{phi(3]]
ADHI43([3, 1] Cos{phi(11] ¢ Sin[philt]} Sin{phi{3]]
ADH14901, 2] ADH154[2, 3] + ADHiS4(3, 3] Sinl[phi(2]]

' s
v v v v v

JACRE1[4]) -> ADR{48(2, 4] ADH{42([3, (] - ADNi48[2, () ADHi48(3, 4]
JACRS{[S] -> ADH{48(3, 4) ADH{49{1, 1] - ADH{48[3, 1] ADH149(f, 4]
JACREI (6] -> -(ADH(48([2, 4] ADH149(t, 11) + ADH148(2, 1] ADH149[1, 4]
JACR82[4) -> ADHLSO{2, 4} ADMISO[3, 1] - ADH150{2, (] ADHISO{3, 4]
JACRB2[5] -> ~(ADH150{1, 4] ADHL50{3, {]) + ADH{49(1, t] ADHiS0[3, 4]
JACRB2[6] -> ADH150[L, 4]} ADNISO[2, 1] - ADH149[1, 1] ADH150[2, 4]
JACRB5[4] -> ADH160[2, 4] ADHI60[3, 1] - ADH160[2, 1] ADH160[3, 4]
JACRSS[5] -> -(ADH160[1, 4] ADHL60(3, 1)) + ADR149{1, 1] ADHL60([3, 4]
JACR8S[6] -> ADH160([%, 4] ADHi60[2, 1] - ADH149(f, 1] ADH160[2, 4]

(betal1})? ~> (ADH15S[3, 3] JACR8L[5) (delta[i])® -

> ADHLS5[2, 3] JACRE1(6] (deltali])* +

> ADHISS[3, 3] JACRE2(S51 (deltal3])’ -

> ADH1SS[2, 3] JACRE2(6] (delta{3])* -

> ADHi83([3, 3] ADHISS[2, 3] (s[4])’ ¢

> ADHiS3[2, 3] ADHI5S(3, 3] (s[41)*) /

> (ADH{5S[3, 3) JACRS5{S] - ADH{55{2, 3] JACR25[6])

(s[i]1)* -> (-(JACR8S[5] (beta[1])’) + JACR81({S] (deltaf{])> +

> JACR82(S] (delta[3])* + ADHIS3[2, 3] (s[4])’) / ADH155(2, 3]
(beta[2])" -> (-(JACRRS[4] (beta[i])*) + JACR81[4] (deltalt])’ +

> JACRE2(4] (delta[3])® - ADR{SS{1, 3] (s[1})’ + ADH{53[1, 3] (a[4D)*
> Y/ at

(phil2])* -> (-(ADH147[3, 3] ADH160[2, 1] (beta[{])’) +

> ADHE4T(2, 31 ADH160[3, 1] (beta{1])? - ADRI47{3, 3] (batal2])’ +
> ADHI4T(3, 3] ADM148[2, 1] (deltalil)’ -

> ADH147(2, 3] ADH148[3, 1] (deltalt])’ +

> ADHL47(3, 3] ADHISO[2, 1] (deltal3])’ -

> ADH147(2, 3] ADRESO[3, 1] (deltaf3])?) /

> (ADH147[3, 3] Cos[phi[{]] - ADR147(2, 3] Sinl[phi{1]D

(phil3])* -> (-(ADHI60[2, 1] (betal1])?) - (beta[2])’ +

> ADR{42(2, 1) (deltal(])’ + ADHiSO[2, 1] (delta(3))* -

> Cos[phift]] (phi[2])') / ADHI47(2, 3)

(phi[1]) -> —(ADH149(1, 1] (betalt])*) + ADHi49(1, 1] (delta[t])’ +

> ADH149(1, 1] (delta[3]))’ - Sin(phi{2)) (phi[31)’

JACRS6(6] -> al (beta[2])’

JACRE8{5] -> -(JACRBS([6] (beta[1])®) + JACREL[6] (deltalt])’ +

> JACR82[6) (delta[3]1)’ - ADMISS[3, 3] (s[i})’ + ADH153(3, 3) (s[4))’
JACRBB{6) -> JACRES[S] (betal1])’ - JACRS[5) (deltafil)’ -

> JACRS2{5) (delta[3]13' « ADRISS[2, 3] (s[1])* - ADHi53{2, 3} (s[4])>
3ACR89[2) ~> -(Sin{phifL])] (phi{tD)")

JACRBS[3] -> Coslphilt}] (philt])®

JACRE9[4] -> (Cos[phi(il] JACRSS[6] - JACRSS(S] Sin[phi[1]1}) (beta[t])’ -
> (Cos{phil1]] IACRSt[6] - JACREL[S] Sin(phi(1}]) (deltafil)’ -

5> (Cos[phi[11] JACRS2[6] - JACRS2([S] Sinfphi{1]]) (deltaf3])’ +

> (ADH1SS[3, 3) Cos{phi[1]) - ADH15§[2, 3] Sinlphil11]) (s{1])’ -

> (ADHIS3(3, 3] Cos[phi[1]] - ADHLS3[2, 3] Sinlphilt]]) (s[41)’
JACRE9(S) ~> JACRS[4] Sinlphi{1}] (beta[1])’ -

> JACRE1[4] Sinfphil1]] (deltalt])® -

> IACRS2[4] Sin(phi[1]] (delta[3])’ +

> ADHASS[f, 3] Sinfphilt}] (s(t]>* - ADHIS3(1, 3] Sinfphi{t]] (s[4])’
JACRS9[6] -> ~(Cos[phift]] JACRES[4] (hetall])’) +

> Coslphilt]] JACRS1[{4] (deltal1])? +

>  Cos[phil1]) IACR82(4] (delta[3])’ -

> ADRISS{1, 3] Cos[philt]] (s(1])> + ADRIS3{1, 3} Cos(phif1]) (s[4})
JACR9O[1] -> (ADH147(3, 3) Cos[phil11] - ADRI47[2, 3} Sin[phif1]))

> (phil2])?

JACRSO[2) -5 -(ADHI4T{3, 3] (phi[1])*) + Sin{philf}] Sin{phil2)) (phi[2])’
JACRSO[3] -> ADH147[2, 31 (philt])> - Cos[phi[111 Sin[phif21]1 (phi[2))
JACR90[4] -> (-(ADN147(3, 3} JACRSS{S)) ¢ ADH{47[2, 3] JACReS(6])

> (betalf])* - (~(ADH147(3, 3] JACR21[5]) + ADH147{2, 3] JACReL[6])
> (delta[i])? - (-~(ADH147{3, 3] JACRS2([5)) + ADH{47[2, 3] JACRE2[6])
> (delta{3))® + (-(ADH(47(3, 3] ADH{SS([2, 3)) +

> ADH147(2, 3] ADHISS(3, 31) (s(1])’ -

5 (-(ADH147{3, 3] ADH153(2, 3]) + ADR147(2, 3) ADH153(3, 31) (s{4])’
JACR9O[S] => (ADHI47[3, 3] JACRES{4] ~ JACRSS(6) Sin[phi(21])

> (beta{11)’ - (ADHI4T[3, 3] JACRB1[4] - JACRe1(6] Sin[phil2]1])




> (deltal1))? - (ADH147(3, 3] JACRS2[4] - JACRE2(6) Sin{phi[2]])
> (delta[3})* + (ADH147(3, 3) ADHSS[L, 3} -

> ADH1SS[3, 3] Sinlphi(2]]) (s(1])’ -

> (ADH147[3, 3) ADHIS3[{, 3) - ADH1S3(3, 3] Sin[phi(2]1) (s[4])*
JACRS0{6] -> (-(ADH147[2, 3] JACRES[4]) + JACRES[S] Sin[phil2}1)

> (betal1])* - (-(ADH147(2, 3] JACRS1[4]) + JACRBL[5] Sin[phif2]])
> (delta[{])* - (~(ADH147[2, 3] JACRE2[4]) + JACR82[S) Sin[phil2]])
> (delta[3])? + (-(ADH{47(2, 3] ADHISS[t, 31) +

> ADHISS(2, 3] Sin{phil2]]) (s[t])’ -

> (-(ADH147[2, 3] ADHIS3[t, 3]) « ADM153[2, 3] Sin[phi[21]) (s[4])*
JACROL[1]} -> (ADHI48(3, 1} Cos{phi[1)) - ADHi48(2, 1] Sin[philil])

> (phi{2])? + (-(ADH147{3, 3} ADH148[2, 11) +

> ADH147[2, 3] ADH148[3, 1]) (phi{31)’

JACRS1[2]} -> ~(ADH148(3, 11 (phi[1])") +

> ADH149(f, ] Sin[philf]] (phif2D)’ +

> (ADM147(3, 3) ADH149[1, 1] - ADH148[3, 1] Sin[phif21]> (phi(3D)
JACRS1(3] -> ADH148[2, 1] (phi[i])’ -

> ADH149[t, 11 Cos[phi[11} (phi{2))’ +

> (-(ADH147{2, 3] ADH14S[1, 11) + ADH148(2, 1) Sinlphi[2]]) (phil31)’
JACRO1 [4] => (-(ADH148[3, 1] JACR3S([S]) + ADHi48[2, 1] JACRSS[6)

> (beta[1])? = (-~(ADH148[3, 1] JACRS1(5]) + ADHt48[2, t] JACRB1[6])
> (dalta[1])’ = (~(ADH148[3, 1] JACR82([5]) + ADH143[2, {] JACRE2{6])
> (delta[3])* + (Cosfphi{{]] JACRE1(6] - JACRS{[S) Sin{phi(1]])

> (phif2])? + (~(ADM{47(3, 3] JACRS{{5]) + ADH{47(2, 3] JACRE{[6])

> (phi[3])* + (~(ADH148[3, 1] ADNISS[2, 3]) +

> ADH142[2, 1] ADH{SS([3, 3)) (s[tD)® -

> (~(ADH148{3, 1] ADH{53[2, 3]) + ADH142[2, 1) ADH1S3(3, 3]) (s(4D)’
JACROL[S] -> (ADH148[3, 1] JACRES[4] - ADWi49{t, 1] JACRSS{6])

> (beta[1])? - (ADH148(3, 1} JACRS1[4) - ADHi49[L, 1) JACRE1[6])

> (delta[1})' - (ADH148[3, 1] JACRS2{4) - ADHi49(f, 1) JACRS2[6])

> (delta[3])? - JACRRL[6] (phil1])’ +

> JACRBI[4] Sinlphi[{]] (phif2])’ +

> (ADH147T{3, 3] JACR81{4) - JACR81[6] Sin{phif2]}) (phil31)' +

> (ADH14£[3, 1) ADHISS[1, 3} - ADW149{i, 1} ADH{SS{3, 3D) (s[1])* -

> (ADH148(3, 1} ADHiS3[1, 3] - ADN149[t, 1] ADH{S3[3, 3]} (=[4])’
JACR91[6] -> (-(ADH148([2, 1] JACRES[4)) + ADH{49({, 1) JACRES[S])

> (betal1])? - (~(ADH148{2, 1) JACRSI[4]) + ADHi49(f, 1] JACRSL[S])
> (deltal{])? - (-(ADH148(2, 1} JACR22[4]) + ADHi4S[1, 1] JACRS2[51)
> (delta[3]))’ + JACRS1([S} (phil1])’ -

> Cos{phil1]] JACRB{[4] (phif2])’ +

> (~(ADH147[2, 3] JACRBL[4]) + JACRS{[5] Sin[phi[2]1) (phi[3])’ +

5> (-(ADH148{2, 1] ADHIS5{{, 3]) + ADH149[1, {1 ADMIS5[2, 3]) (s[t])’ -
> (-(ADH148[2, 1] ADHIS3[1, 31) + ADWi43[1, 1] ADH{53{2, 3]) (s[4])’
JACR92{1] -> ~((~(ADH148(3, 1] ADH{50{2, 11) + ADH148[2, 1] ADH(S0[3, 1])
> (delta[i])*) + (ADH150[3, 1] Cos[phi[i]] -

> ADH1S0{2, 1] Sinlphil1]1]) (phif2])’ +

> (-(ADH147{3, 3] ADMIS0[2, 11) + ADHi47[2, 3} ADHISO[3, {]) (phi{3])’
JACR92{2) -> ~((ADH148{3, 1] ADHi4S9{f, 1] - ADN{4S(1, 1] ADH{S0(3, 1])

> (delta[1])’) - ADHISO[3, 1] (philil)’ +

> ADH14S[f, 1] Sin[phil1]] (phil2])’ +

> (ADH147[3, 3] ADHi49[1, 1] - ADH150[3, 1] Sin[phil2]]) (phil3])’
JACR92[3] -> ~((-(ADH148([2, 1] ADHi49{i, 1]) + ADH149[1, 1] ADHiS0(2, (])
> (delta[1])?) + ADR1SO[2, 1) (philt])' -

> ADR{49[f, 1] Cos[phili]] (phil2})’ +

> (~(ADH147(2, 3] ADHi49(i, 11> + ADHi50{2, 1] Sin[phi(2]]) (phi[3])’
JACR92[4] ~> (-(ADHL50[3, 1) JACRBS[S]) + ADHtS50(2, 1] JACRE5{6])

> (betal1])* - (-(ADH148[3, 1] JACR22(S]) + ADH{48{2, 1] JACR22([6])
> (delta[{])* ~ (-(ADH150(3, 1] JACR82[5]) + ADHi50[2, 1} JACR82[6))
> (deltal[3])* + (Cos{phil[1)] IACR82{6] - JACR82{S] Sinlphi{t}]}

> (phi[2])’ + (~(ADH147(3, 3] JACRS2[5]) + ADH147(2, 3] JACRS2[6])

> (phi(3]>7 + (~(ADH150[3, {] ADHiSS{2, 3]1) +

> ADH150{2, 11 ADH155[3, 3]) (s[11)’ -

> (-(ADH150[3, 1} ADH153[2, 31) + ADHiSO0[2, 1} ADHIS3[3, 31) (s[4])’
JACR92{5] -> (ADH150[3, 1] JACRE5[4] - ADH143(1, 1] JACRS5(6])

> (beta[1])’ - (ADH148[3, 1] JACRS2(4] - ADH{49(f, 1] JACR82(6])

> (delta[1])? - (ADH1SO[3, 1] JACRS2{4] - ADHi49[f, 1) JACRE2(6))

> (delta[3])* - JACRA2[6] (phil1])’ +

> JACRS2[4] Sinlphilt]] (phil2l)’ +

> (ADH147(3, 3] JACRS2[4] - JACRS2[6] Sin[phif2]1) (phi{3D)’ +

> (ADH1SO[3, 1] ADH{SS{1, 3} - ADH142[1, 1) ADHISS(3, 3]) (s[t])’ -

> (ADH1SO[3, 1] ADNS3[1, 3] - ADH149[1, 1] ADHI53[3, 31) (s{4])’
JACR92[6] -> (-(ADH150(2, 1] JACRB5[41) + ADH{4S[1, 1] JACRS5[5)

> (bata[1])? - (-(ADH148[2, 1] JACR22(4]) + ADH149[{, 1] JACRS2(5))
> (delta[£])’ - (-(ADH{50[2, 1] JACRS2(4]) + ADH{49{1, 1] JACRS2{S})
> (delta[3])* « JACR82[5] (philt])® -

> Cos(phi[1]] JACRE2[4] (phil2])’ +

> (-(ADH147{2, 31 JACRE2[4]) + JACRS2[S] Sin{phil211) (phif3])’ +

5> (-(ADH150[2, 1] ADHLSS[{, 3] + ADH14S[1, 1] ADNIS5[2, 3D) (s(t])’ -
> (-(ADH150[2, 1] ADHIS3[L, 31) + ADH{4S{1, 1] ADMIS3[2, 3]1) (sf4])’
JACR93[4] -> -((-(ADH{48{3, 1] ADH153[2, 3]) + ADH148[2, 1] ADHIS3([3, 3])
> (deltal11)*) - (-(ADH1SO[3, 11 ADHIS3[2, 3]) +

> ADHISO[2, 1] ADHIS3([3, 31) (deltaf3}])’ +

> (ADHI53[3, 3] Cos[phift]] - ADHiS3[2, 3} Sinfphi[{]11) (phil2])* +

> (-(ADH147{3, 3] ADH153[2, 3]) + ADH147[2, 3] ADHI53(3, 3]) (phi[3]}
JACR93[5] -> -((ADH148[3, 1] ADHIS3{L, 3] - ADH149(f, 1] ADHi53(3, 3])

> (delta[1])*) - (ADH{S0{3, 1) ADH{S3[1, 3] -
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> ADHI49[t, £] ADHI53[3, 31> (delta[3])* - ADHAS3[3, 3) (philil)’ +
> ADR153[1, 3) Sialphilil) (phi[2])? +

> (ADHL47(3, 3} ADH153[f, 3] - ADH153[3, 3] Sin[phil2])) (phi[3])®
JACRO3[6] -> -((-(ADH148[2, 11 ADHIS3[t, 3]) + ADH14S[1, 1) ADHiS3{2, 3])
> (deltal1))?) - (-(ADH1SO[2, 1] ADHL53([1L, 3)) +

> ADH{49[1, 1] ADNIS3[2, 3]) (deltal3]) + ADHiS3(2, 31 (phi{i])> -
> ADHIS3[1, 3] Coslphil1}] (phil2])? +

> (-(ADH147[2, 3] ADRIS3{1, 3]} + ADHIS3[2, 3] Sinlphi(21}) (phil31)’
JACR94{4] -> -((-(ADH148[3, 1] ADR(55[2, 3]) + ADHi48(2, 1] ADHSS(3, 3])
> (deltal1])?) - (-(ADH1SO[3, (] ADHiSS[2, 3]) +

> ADHISO[2, 1] ADHSS[3, 3]1) (delta[3])® +

> (ADHISS(3, 3] Cos(phil{]) - ADH155[2, 3] Sin{philil]) (phi[2])* +

> (-(ADH{47[3, 3] ADRISS(2, 31) + ADH147[2, 3] ADH{55[3, 3]) (phi[3])®
JACRO4[S] -> - ((ADH148[3, (] ADH1SE{1, 3] - ADH{49{1, 1] ADKLSS(3, 3))

> (deltal1])*) - (ADH150[3, 1] ADHISS[{, 3] -

> ADHI49[1, 1] ADHIS5[3, 3]) (deltal3])* - ADNISS[3, 3] (phift])’ +
> ADHISS[{, 3] Sin[philt]] (phi{2])® ¢

> (ADH147(3, 3] ADMISS({, 3] - ADHISS[3, 3] Sin[phi[2}]) (phil3])*
JACRO4([6) -> -((-(ADM148[2, 1] ADHISS[{, 3)) + ADH49[t, 1] ADHiS5[2, 3])
> (delta[1])") - (-(ADH150[2, (] ADRLSS[f, 31) +

> ADH149(t, 1] ADHISS[2, 3]) (delta[3))’ + ADHi55[2, 3] (phil1})’ -
> ADHISS(f, 3] Cosl(philt]) (phif2])* +

S (-(ADH147[2, 3) ADHISS{{, 3]) + ADH155[2, 3] Sialphi[2]1]) (phil3])*
JACROS{1] -> ~((-(ADH148[3, 1] ADH{60[2, 1)) + ADHt48{2, 1] ADH160[2, {1)
> (deltalt])*) = (-(ADH1S0[3, (] ADHL60[2, 11) +

> ADHSO[2, 1] ADHI60[3, 1]) (deltaf3])? +

> (ADH160(3, 1] Cos(phi[1]] - ADR160[2, 1] Sin[phi[11}) (phil2]}’

> (-(ADH147[3, 3] ADH160{2, 1]) + ADH{47(2, 3] ADH{60[3, {]) (phi[3])®
JACRIS[2] -> ~((ADN148[3, 1] ADH149([1, 1] - ADHL49[{, 1) ADM160{3, {])

> (delta(1])*) - (ADH149[{, 1] ADHiSO[3, {} -

> ADMI49[1, 1] ADH160[3, 1]) (deltal3])’ - ADHL60[3, 1] (phil1])* ¢
> ADH149[1, 1] Sinl(phi(1)]) (phif2])* +

> (ADRIAT[3, 3] ADH{49(1, {] - ADH160[3, 1] Sin[phi{2]]) (phil[3]>*
JACRSS[3] -> -((-(ADH148[2, 1] ADHi49(t, 11) + ADH{49(f, 1) ADHis0{2, 1])
> (deltalt])") - (-(ADH149(1, t] ADMISO[2, 1]) +

> ADH{49(1, 1) ADH160[2, 1]) (deltal3])’ + ADH160[2, {] (phift])® -
> ADH149[{, 1] Cos(philt]] (phif2])* +

> (-(ADN147[2, 3) ADHi4S[{, 1]) + ADHI6O[2, 1) Sin[phif2]1) (phi[3])*
JACROS[4] ~> (-(ADM160(3, 1] JACASS[5]) + ADH160{2, 1] JACRES[61)
(betalt])® - (~(ADH148[3, 1) JACRES[S]) + ADH146(2, 1] JACRES[6])
(deltal1))® - (~(ADH1SO[3, 1] JACRES[S]) + ADHISO[2, 1) JACRS5[6])
(deltal3]) + (Cos[phif1]] JACRES[6] - JACRSS[S] Sinl[phi(f]])
(phil2])> + (~(ADH147[3, 3] JACRES[S]) + ADH{47[2, 3] JACReS[6])
(hi[3Dh’

JACROS{S] -> (ADH160[3, 1] JACRSS[4] - ADH149[1, 1] JACR85(6))

> (betali])’ - (ADH148[3, {1 JACRSS(4] - ADH149[1, 1] JACRES[61)

> (delta[1))* - (ADN1SO[3, {1 JACRSS[4) - ADH14S[1, 1] JACRSS(6])

> (deltaf3})’ - JACR8S[6] (phil1])’ +
>
>

EEVERVERVINYS

JACRSS[4] Sinlphilil] (phi[2D)' +

(ADH{47[3, 3) JACRES(4) - JACRS5(6) Sinlphif2)1) (phi{3])’
JACRSS[6] -> (-(ADH{60[2, {] JACRES[4]) + ADH14S[t, 1] JACRSSIS])
> (betalt])? - (-(ADH148(2, 1]} JACRS5[4]) + ADH149[f, 1] JACHBS[S])
> (delta[1])? - (-(ADH1S50[2, 1] JACRS[4]) + ADHI49[f, {] JACRSS[S))
> (delta{3])’ + JACRSS[S] (phi[1])’ -
> Cos{phi[t]] JACRES[4] (phi[2])’ +
> (-(ADH147[2, 3] JACRS5[4)) + JACRES{S] Sinl[phi{2]]) (phif3})’
JACRB7(6) ~> -(JACHEE(6] (bera[2])?)
JACRO6[E] -> JACR9S[1] (beta[1])* - JACRS{[1] (deltalt])’ -
> JACR92[1) (delta[3])' + JACRSO[t] (phi{3])*
JACR96{2] -> JACRS5{2] (betall))’ - JACRS{{2] (deltal1D)’ -
> JACR92[2] (delta(3])’ + JACR8S[2) (phil2])’ + JACRS0{2] (phil3])’
JACR6(3] -> JACR95([3] (berafi])’ - JACR9L[3] (deltalt])’ -
> JACR92[3) (delta[3])’ + JACRSS[3] (phif2])’ + JACR9G[3] (phi{3])’
JACR96[4] -> JACRIS[4]) (batal1])? - JACRSI[4] (deltali})’ -
> JACR92[4) (deltal3))’ + JACRES[4] (phi[2])® + JACR90[4] (phi[3])* +
> JACR94[4} (a[1])* - JACR93[4] (s[41)’
JACRO6{5] -> JACROS[5] (betalt}>’ - JACROL{5] (deltaf1l)' ~
> JIACR92(S] (delta(3]1)' + JACRRE[S) (philt])’ + JACR8[S] (phif2])’ +
> JACR90[5] (phil31)* + JACR94[S] (s[t])' - JACR93[5) (=[4))’
JACR9G[6] -> JACROS[6] (beta[1])* - JACROL[6] (deltali])’ -
> JACR92(6]) (delta[3])’ + JACR28[6] (phil[1])’ + JACRES[6] (phil2])’ +
> JACR90[6] (phi[3))® + JACRS4[6] (s[11)' - JACRS3[6] (s[41)’
(beta[11)?? ->
> (-(ADH{SS[2, 3] JACRST{6]) - ADHISS[3, 3) JACROS[S] +
> ADHLSS[2, 3] JACR96(6) + ADH{SS(3, 3] JACRS1[S]) (delta[t])*’ -
> ADH{55[2, 3] JACRE1([6] (deltal1])*’ +
> ADH155[3, 3] JACR82(S] (delta{3])!’ -
> ADHISS[2, 3] JACRE2{6] (delta[3])’’ -
> ADH1E3[3, 3) ADH155({2, 3] (s[4])?' ¢
> ADHIS3[2, 3] ADHISS[3, 3] (s[41)'") /
> (APHIS5[3, 3] JACRE5[S) - ADHi55[2, 3] JACReS[6])
(s[11)’? => (~JACR96[S] - JACRES[5] (beta{t])’ +
> JACRS1{5] (delta[1])? + JACRR2{S] (delta[3})'* ¢
> ADH{53{2, 3} (s[41)'') / ADHISS[2, 3]
(beta[2])* =>
> (-JACRO6[4] - JACRSS[4] (beta[1])’’ + JACRSI[4] (delta(11)*’ +




> JACRE2(4] (deltal3])** - ADHISS[1, 3] (s{L])'? +
> ADHIS3({, 31 (s[41)**) / ai
(phi[2])?? -> (-(ADH147(3, 3] JACRS6([2]) + ADR147[3, 3] JACRS6[3) -
> ADR147({3, 3] ADH160(2, ] (beta{t])’’ +
> ADH147(2, 3] ADH160(3, 1] (beta{1])’’ - ADHI47[3, 3] (betaf2])?’ +
> ADHI47(3, 3] ADH148[2, )} (delta(tD)*’ -
> ADH147(2, 3] ADH148([3, ] (deltal1])'’ ¢
> ADH147[3, 3] ADHiSO[2, 1] (delta[3])** -
> ADH147[2, 3] ADHiSO[3, 1] (delta[3))'*) /
> (ADH147(3, 3] Cos[phil1]] - ADHi47[2, 3] Sin[phi{1]]}
(phi[3])?* -> (-IACR96[2) - ADH160[2, 1) (bata[1])’’ - (beta[2])'? ¢
> ADH{48[2, 1] (delta[1])?’ + ADHISO[2, 1) (delta[3])’’ -
> Cos{phil1}} (phil[2])**) / ADM147[2, 3
(phil11)7? -> -JACR96[1] - ADH149[1, 1) (beta[i})’! +
> ADH149{1, 1] (delta[{])?’ + ADH14S[f, 1] (delta[3])’’ -
> Sinlphi(2]) (phif3])*’
betaf4] => 0
ADH16612, 4] -> (hi ¢ h2) Cosfdelta[3}
ADH163(3, 4] -> af
ADH164(2, 4] -> -12 - 14 + ADHi66(2, 4]
ADHI64(2, 4]
batal3) -> -ArcSin{----====-=--c 1
ADH163(3, 4]
ADH166[3, 4] -> (h1 + h2) Sinl[delta(3]]
ADH165(3, 4] -> -h3 « ADH166(3, 4] + s[4)
ADR167(2, 4] -> -(ADH163[3, 4] Sin[beta(3]D)
ADHI67[3, 4] -> ADH163([3, 4] Coslbeta(3]]

2
#[2] -> -(-2 ADH165[3, 4] + Sqrt{4 ADH165[3, 4] -
2 2 2
> 4 (ADHL64[2, 4] + ADH165[3, 4] ~ ADHi67[2, 4] -~
2
5 ADRI6?[3, 41 )1) / 2

phil6] -> -3.14159

ADR{72{1, 1) -> Cos[phi[6]]

phif5] -> -ArcTan[ADHi72{{, 1], 0O}

ADHi75(3, 2] -> -Sin[beta[3]]

ADH17S(3, 3] -> Cos[beta[3]]

ADH174(2, 2] ->

>  Cos[phi[6]] (Cos[beta[3]] Cos{delta[3]] + Sin(betal3]] Sinldeltal3]]}
ADHATA[3, 2] ->

> Cosiphi{6]] (ADHI7S{3, 2) Cos[delta[3]] + ADHI7S[3, 3] Sin[delta[3]])
phi[4} -> ArcTan{ADH174[2, 3], ADH{iT4(3, 2]]

ADH1B4(2, 4] -> 12 + 14

ADH184(3, 4] -> h3 - s[4]

ADHI73([1, 4] -> ~({-hl - h2) Sin[phil6]1>

ADHI73(2, 4] -> (~hi - h2) Cos[phil61]

ADH186[2, 4] ->

>  ADH184[2, 4] Cos[daltaf3]] + ADH{84[3, 4] Sinldelta{3]] +

> a[2) Sin[delta[3]]

ADHiBS[3, 4] ->

> ADHi24[3, 4] Cos(delta[3]] + Cos{delta[3]] s[2] -

>  ADH{iB4[2, 4] Sin[delta{3]]

ADM180[3, 4) -> -(ADH{73[1, 4] Sin{philS1])

ADHI79{2, 4] -> ADH173[2, 4] Coz[phi(4]] - ADHiBO[3, 4] Sin[phil4]]
ADH179(3, 4] -> ADH180[3, 4] Cos[phi{4]) + ADH173[2, 4] Sin[phil4]}
ADH1BO[1, 2] -> -(Cos[phi[5]] Sin[phil6]])

ADH180[1, 4] -> ADH173[1, 4] Coslphi(s]

ADH180[3, 1] -> -(Cos[phil6]] Sin{phi[SID

ADH180[3, 2] => Sin[phi{S]) $inlphi(6]]

ADHI8S[f, 4] ->

>  ADHI80[{, 4) + ADHi80{i, 2] ADH186(2, 4] + ADH186[3, 4] Sin[phi{$]]
ADHiBS[2, 4] ->

> ADH173[2, 4] Cos[phi[4]] - ADH180[3, 4] Sin[phi[4]] -

> ADH186(3, 4] Cos[phil[51] Sin[phi[4]] +

> ADRI86[2, 4] (Cos[phi[4]) Cos{phil6]] - ADH{20[3, 2] Sin{phil4]]}
ADHIBS([3, 4] ~>

>  ADHI80[3, 4] Cos[phi[4]] « ADHIB6{3, 4] Cosfphil4]] Cos[phi(S}] +
> ADH173[2, 4] Sinl[phi(4]] +

> ADH186[2, 4] (ADK180[3, 2] Cos[phi[4]] + Cos(phi[6]] Sinl[phil4]1])
ADHL78[2, 3] -> -(Cos[phi[5]] Sin[phil41])

ADHI78(3, 3] -> Cos[phil4]] Cos(phi{5]

ADH179(2, 1] -> -(ADH180(3, 1] Sin[phi{4]]) + Coslphif4}] Sinlphi(6]]
ADH179(3, 1] -> ADH{BO(3, 1] Cos[phi[4]] + Sin[phif4]] Sin[phil6}]
ADH18O[1, 1] -> Cos[phi{S1] Cos[phil6}]

ADH181[f, 3] -> ADHLBO[1, 2] Sin[delta[3]] + Cos[delta[3]] Sin{phi(5])
ADHLBL([2, 3} ->

>  ~(Cos(deltal3]] Cos[phi{5]]1 Sin[phif4]}) +

> sin[delta{3]] (Cos{phi[4}] Cos[phi[6]) - ADH180[3, 2] Sin[phi[4]}
ADHI8L(3, 3] ->

>  Cos(delta[3]} Cos[phi[4]] Cos[phil§)]

>  Sinldelta[3]] (ADH18O[3, 2] Cos[phil4}] + Cos[phif6]] Sinfphi(4]]
ADH{82[1, 3] ~> ADH180{1, 2} Sin[deltai3]] + Cos[deltal3}] Sinlphils}]
ApHig2(2, 31 >

> =(Cosldelta(3]] Coslphi[5}] Sin[phif4]]) +

>  Sin[delta[3]] (Cos(phi[4}] Cos(phil6}] - ADH180[3, 3] Sin{phil4]])

v v

v

v v

v

123

ADR182(3, 3] ~>

> Cos[deltal3}] Coslphil4}] Cos[phi(S1] +

> Sin[delta[3]] (ADH180([3, 2] Cos{phi{4]] + Cos(phi[6]}} Sinl[phil[4]])
ADHIBS[2, 1] -> -(ADH{20[3, 1] Sin[phil41]) + Cos{phil41] Sin[phi[6]]
ADHIBS([3, 1] -> ADH18O{3, ] Cos[phi(4]] + Sin[phi(4]] Sin[phi[6]]
JACRLO1[4] -> ADHI79[2, 4] ADH179(3, 1) -~ ADHLT9(2, 1] ADHI7TS[3, 4]
JACR101[S] -> ADHI79([3, 4) ADHiBO[{, 1) - ADH{72(3, 1] ADMiBO[1, 4]
JACRIOL[6] ~> ~(ADH{T9[2, 4] ADRi8O[1, f]) + ADH179[2, 1] ADRi2O{{, 4]
JACR104{4] -> ADH18S(2, 4] ADHI85(3, 1] - ADH185(2, t] ADHI85(3, 4]
JACR104[5] -> -(ADRE85(1. 4] ADHISS(3, t]) + ADH{BO[f, 1} ADHI8S({3, 4]
JACR104{6] -> ADH185{1, 4) ADHi85{2, 1) - ADRiBO[1, 1] ADHI85[2, 4]
(beta[3])* ~> (ADH{82{3, 3] JACRIOL[S] (deltaf3])® -

> ADH182(2, 3} JACR101[6] (delta[31)’ -
> ADHI8E(3, 3] ADR182(2, 3] (s[4])*
> ADHES1(2, 3] ADRI82[3, 3] (s(4D)*) /

> (ADH182[3, 3] JACR104{S) - ADHi82{2, 3] JACRL04{6])
(2210’ -> (~(JACR{O4[S] (beta[3])') + JACRIOL(S] (delta[3])’ +

> ADH181(2, 3] (s[4])°) / ADHi82{2, 3]

(bata[4])* -> (~(JACR104[4] (beta[3])*) + JACRLO{[4] (delta(3])* -
> ADRIB2(1, 3) (s[21)° + ADH1BL{L, 3) (s[4])*) / at

(philS])* -> (-(ADHI7S[3, 3] ADH{BS[2, 1] (beta[31)') +

> ADHI78{2, 3] ADH1B5(3, {1 (betal3])’ +

> ADHL78(3, 3] ADH179{2, 1] (deltal3])® -

> ADHI72(2, 3) ADHI79[3, {] (delta(3])?) /

> (ADH178{3, 3] Cos[phil4]] - ADH{78{2, 3] Sin[phi[4])])

(phi[61)* -> (-(ADH12S5[2, 1) (beta(3])’) ¢ ADH179[2, i} (delta[3])’ -

> Cos[phi[4}] (phi[5))*) / ADHi7B(2, 3]

(phif4])? -> -(ADH180[f, 1] (beta{3I)*) + ADHI8O[1, 1] (delra[3])® -

> sinfphi[5]] (phi[6])?

JACRIO7[S] => -(JACR104[6) (beta[31)?) + JACRIOL[6] (deltaf3])' ~

> ADHi82(3, 31 (s{2])’ + ADH181[3, 3] (s(4])’

JACR107[6) -> JACRL04[5] (beta[3])* ~ JACR10L[S] (delta[3])’ +

> ADHI83([2, 3] (sf2])’ - ADMigf[2, 3} (s(4])’

JACR108[2] ~> -{(Sin[phi(4]] (phil[4])*)

JACR108[3] -> Cos[phil[4)) (phi{4])>

JACR108[4) -> (Cos[phi[4])} JACRIO4[6} - JACR104[5] Sin(phil4]])

> (beta[3])’ - (Cos[phi{4]} JACR101[6] - JACR101(5) Sin{phi[4]])

> (delta[3])’ + (ADH{®2{3, 3] Cos[phil4]] - ADHi82[2, 3] Sin[phi{4]])
> (s(2])* - (ADH18L[3, 3] Cos{phi[4]1]1 - ADHi81[2, 3] Sin(phil4]1)

> (241>

JACR108{5) -> JACR{04[4} Sin(phi[4]] (beta[3])' -

> IACR101{4] Sin{phi[4]] (delta(3])’ +

> ADHi82[f, 3] Sin(phi[41] (s{2])' - ADH{8{[f, 3] Sinlphi[4}] (s(4D)*
JACR108(6] -> -(Cos{phi[4]] JACRL04[4} (beta(3])")

> Cos[phi{4]] JACR101[4] (delta[3])’ -

> ADH182[1, 3] Cos(phif4]] (s{2])* + ADHiBi[1, 3] Cos([phil4l] (=[4))’
JACR109[1] -> (ADHL78[3, 3] Cos[phil4]] - ADH178[2, 3] Sin{phi{41])

> (phi[s])?

JACR{09[2] -> -(ADHi7B[3, 3] (phil4])?) +

> Sinfphi(4)) Sinlphi[5]1 (phifS})?

JACRL09[3] -> ADH178[2, 3) (phil(4))’ - Cos[phi[4]1] Sin{philS]] (philS])*
JACR109[4] -> (~(ADH178{3, 3] JACR104[S]) ¢ ADHL78[2, 3) JACR104[61)

> (betal3])* - (~(ADH178[3, 3] JACRI101i(S}) + ADHi78([2, 3] JACRiOi[6])
> (delta[3])* + (-(ADHi78{3, 3] ADH{82[2, 3]) +
> ADHI78{2, 3] ADHi82[3, 3]) (sf2])’ -

> (-(ADH178[3, 3] ADHIB1{2, 31) + ADHi78[2, 3] ADHIBL[3, 3]) (s[4))’
JACR109(5] ~> (ADRL78[3, 3] JACR104[4] - JACR104(6] Sin[phi{51))

> (beta[3])* - (ADR178{3, 3] JACRIO1[4] - JACRL01(6) Sinfphi(S]))
> (deltaf3])* + (ADH178[3, 3] ADRi82(f, 3] -
> ADH182(3, 3] Sin[phi(51]1} (s[2])* -

> (ADH178[3, 3] ADHi&f[1, 3} - ADR{81[3, 3] Sin(phil5]]) (a(4})’
JACR109(6] -> (-(ADH178(2, 3] JACRI04[4]) + JACR104[5] Sinl[phi{SI])

> (beta[3])’ - (-(ADH{78{2, 3] JACR101[4]) + JACRLOL{S] Sinlphi[511)
> (delta[3])* + (-(ADHI78[2, 3] ADRi82[1, 3]1) +

> ADH182{2, 3] Sin{phi[5)]) (s(2))* -

> (-(ADH178[2, 3] ADNiat[{, 3]) + ADHt81(2, 3] Sin[phi[5]D) (sl4D)?
JACRL10[1] -> (ADHI79[3, 1) Cos[phil4)] - ADKL79{2, 1] Sin{phi[41])

> (phi{81)’ + (-(ADH172[3, 3] ADHLTS(2, 1]} +

> ADHi78[2, 3] ADH179[3, 1)) (phil6])>

JACRL10[2] -> ~(ADH179(3, 1} (phi[41)) +

> ADHt20{1, 1] Sin[phi[4]] (philS1)*' +

> (ADH178{3, 3] ADH18O[L, L] - ADHi7S[3, 1] Siniphil[5]]) (phi{é6])*
JACR{10[3} -> ADRITS(2, {] (phil4])® -

> ADH180[{, 1) Coslphi[4]] (phi[S])’® +

> (-(ADH178[2, 3] ADH120[1, fD1) + ADHi79[2, 1] Sin[phi(S1]) (phi{6])’
JACRI10[4] -> (~(ADRi79[3, 1] JACRI04[S]) + ADH179(2, 1] JACRi04[6])

> (beta[3])’ - (-(ADH179(3, 1] JACR10{{5)) + ADH179[2, (] JACR10{[6])
> (delta[3]) + (Cos[phil4]] JACRIOA([6] - JACRIOL(S] Sinlphil41])

> (phi[51)7 + (-(ADHL7S[3, 3] JACR101[5]) + ADH178[2, 3] JACR{01(8])
> (phil61)* + (-(ADH179(3, 1] ADHi82[2, 3]) +

> ADH179(2, 1) ADH182[3, 3]} (s[2])® -

> (-(ADH173(3, 1] ADH181(2, 3]) + ADH179[2, 1] ADH{81[3, 3)) (s(4])’
JACRI10[5) -> (APHI7TS[3, 1] JACR104[4} - ADHiBO{i, 1] JACR104(6])

> (beta[3])* - (ADHI7S[3, 1] JACRiOL{4] - ADH1BO[f, (] JACR101[6])

> (delta[3])’ - JACR{OL({6] (phil4])* +

> JACRLO1[4) Sin[phil41] (phi[51)’ +




> (ADH178[3, 3] JACRIOL{4] - JACRIOL(6] Sin[phi[51]) (phi[6])’ +

> (ADMITO[3, (] ADMIS2(1, 31 - ADMiEO[f, 1] ADHIB2(3, 3]) (s[2])’ -

> (ADHA7S9(3, 1] ADH181(1, 3] - ADHI20[1, 1] ADHIS[3, 3]) (s[41)’
JACR{1O[6] ~> (-(ADR179(2, (] JACRIO4[4]) + ADH180(t, 1] JACRiCA[S))

> (beta[3])* - (~(ADH179(2, {] JACR101[4]) + ADHigO[f, 1] JACRLOL[S])
> (delta[3])* + JACRLOL[S] (phil4))’ -

> Coelphil41] JACR101[4} (philS])’ +

> (-(ADH{78[2, 3] JACR101[4]) + JACR101{S] Sin[philSI}) (phil61)' +

> (-(ADH179{2, 1] ADHi82[t, 31) + ADHigO[1, L] ADH182(2, 3}) (s{2])’ -
> (-(ADHI7T9(2, 1] ABMI&t[1, 31) + ADHigo{t, t] ADHt81{2, 3]1) (s(4))’
JACRi11[4] -> ~((-(ADH{79[3, 1] ADH181[2, 3]) +

> ADHI79(2, 1] ADHIEL[3, 3]) (deltal3])’) +

> (ADHi81[3, 3] Cos[phi[41]1 - ADH181[2, 3] Sin[phi[4]1) (phil5])* ¢

> (-(ADH178(3, 3] APHi81[2, 31) + ADH178{2, 3] ADHI81[3, 3]) (phi[6])’
JACRIAL[ST -> -((ADH179[3, 1] ADH181[1, 3] - ADHiBO[{, 1} ADH1B1(3, 31)

> (delta(3])?) - ADH{BL[3, 3] (phifs])® +

> ADHi8f[f, 3] Sin{phi[411 (phi[5])’ +

> (ADM178[3, 31 ADH18L[1, 3] - ADHI81[3, 3] Sinfphi[51]) (phi{61)’
JACR{11(6] -> -((-(ADH179(2, 1] ADHISL{{, 3]) +

> ADH18O[f, 1) ADHi81[2, 31) (delta[3])?) +

> ADHI8L[2, 3] (phil4])’ - ADHiBL(t, 3] Cos[phi{4]] (phi{S1)® +

> (-(ADHi78(2, 3) ADH1B1[{, 3]) + ADH181(2, 3] Sin(phi{51]) (phil6])®
JACR112[4] -> -((-(ADH179(3, 1] ADHI82[2, 3D) +

> ADRE79[2, 1] ADH1B2{3, 31) (delta[3])') +

> (ADR182(3, 3] Cos{phil4]] - ADH{S2[2, 3] Sin[phif41]) (phi[5])* +

> (-(ADH{78[3, 3] ADH182[2, 3]) + ADHi78[2, 3] ADH{82(3, 3]) (phils])’
JACRL12{5] ~> ~((ADHi79[3, 1] ABHi82(1, 3] - ADW{8O[f, 1] ADHi82(3, 31)

> (delta[3])’) ~ ADH182(3, 31 (phila]D)’ +

> ADH182[f, 3} Sin[phif{41] (phi[51)* +

> (ADHI78[3, 3] ADN182(1, 3] - ADHi82[3, 3] Sin[phi[51]) (phi{6])
JACR{12(6] => -((-(ADH179[2, 1] ADHiB2[L, 3]) +

> ADHL8O[1, 1] ADH182[2, 3]1) (deltal31)’) +

> ApH182[2, 3] (phi[41)* - ADH182(1, 3] Cos[phif4]] (phi[51)’ +

> (-(ADHi78[2, 3] ADH182(1, 31) + ADH{82[2, 3] Sin{phi[5))) (phi{6]}’
JACRLI3[1} => -((-(ADW17S[3, 1] ADMiBS[2, 1)) ¢

> ADH179(2, 1] ADHIBS[3, 1]) (deltal3])’) +

> (ADH18S[3, 11 Cos[phi[4]1) - ADNIB5[2, 1] Sinfphil41]) (phi[51) +

> (-(ADHL78[3, 3] ADH185(2, 1]) + ADKt78[2, 31 ADMI8S(3, t1) (phil6])’
JACRL13[2] -> -((ADHITS[3, 1) ADH180[L, 1] - ADHIZO[t, {] ADH{25[3, ()

> (deltal[3))*) - ADHI85[3, L} (phil4])’ +

> ADM1BO[E, 1} Sin[phi[4]] (phi[S])* +

> (ADH178[3, 3] ADH180([1, 1] - ADH185(3, 1) Sin[phi(5]]) (phil6])’
JACRI13[3] -> -((~(ADH179[2, 1] ADH180[f, 1]) +

> ADH1BO[f, 1) ADHi8S[2, 11) (deltal3])?) +

> ADH185[2, 1] (phi{41)® - ADHISO[1, 1} Cos{phi[4]] (phi[5])’ +

> (-(ADH{78[2, 3) ADH1£0[1, {1) + ADH185[2, £} Sinlphi{5]1) (phi{61)’
JACR113{4] -> (-(ADH18S[3, 1] JACRL04[51) + ADHi85[2, 1] JACRI04{6])

> {beta[3])* - (-(ADH{79[3, 1] JACR{04(5]) + ADHi?79[2, 1] JACRi04(6])
> (delta[3])* + (Cos[phil[4}] JACRI04(6] ~ JACR{O4[5} Sin(phif41])
> (phil5])* + (-(ADN178[3, 3] JACR104[S]) + ADHi78[2, 3] JACR104[6])

> (phif61)’

JACR113{S] -> (ADHi8S5[3, 1] JACR104[4] - ADH{8O[{, 1] JACRI04[6))

> (beta[3])’ - (ADHL78[3, 1] JACR104[4]} - ADHiBO[(, 1] JACRIO4[6])
> (delta[3])? - JACR104[6] (phi{4])’ +

> JACRi04{4) Sin[phi[4]] (phif5])’ +

> (ADH178[3, 3] IACR104[4] - JACR{04[6] Sin[phi[511) (phil6})®
JACRLL3[6) -> (-(ADH125[2, 1) JACR104[4]) + ADH180[1, 1] JACR104[5])

> (beta[3])? = (~(ADH179[2, {] JACRI04[4]) + ADH1BO[1, t] JACR104[5])
> (deltal3])’ + JACR104[5] (phil4])’ -

> Cos[phi[4]] JACR104[4] (philSD)’ +

> (~(ADR178[2, 31 JACR104[4)) + JACRLO4[S] Sin[phif511) (phi[6])*
JACRI14[1] -> JACRL13{1] (beta(3])’ - JACR{1O[L] (delta[3])’ +

> JACR109[1] (phif6])’

JACR114{2] -> JACRL13[2) (betal3])’ - JACR110[2] (delta[3])’ ¢

> JACR108[2] (phifS1)’ ¢ JACR109[2] (phil6])’

JACRL14[3} ~> JACR113[3] (beta[3])® - JACRI10[3] (delta[3])’ +

> JACRL08[3] (phil5])° + JACR103{3] (phil6))

JACRI14[4] -> JACRi13(4) (beta[3])7 - JACR110[4] (deltaf3])* +

> JACRI08[4]1 (phifSI)' + JACR109(4]) (phi[6])’ + JACRL12[4]) (s[2])’ -
> JACRLIL[4) (s[4]1)?

JACRI14[S] -> JACRL{3[5] (heta[3])’ - JACRILO[5] (delta[3))® +

> JACRIOT[5] (phil4])* + JACR108[S] (phi[5))* + JACR109[5] (phil6])’ +
> JAcR112{5]) (s{2]1)° - JACR{L1[S] (s[4])'

JACR114{6] =-> JACRI13[6] (beta(31)’ - JACRI10[6] (delta{3])* +

> JACRLOT[6] (phi[4])’ + JACRIOB[6] (phi(5])* + JACRLIO9[6] (phi[6))’ +
> JACRI£2[6] (s[2])? - JACRIL1[6] (s[4])’

{(betaf3])*’ >

> (-(ADH{82[3, 3] JACRL14[5]) + ADHI82[2, 3] JACRL{4(6) «

> ADH182{3, 3] JACR101[5] (delta[3])’* -

> ADH182{2, 3) JACR101[6] (delta[3])’’ =

> ADHIE1[3, 3] ADHI£2[2, 3] (sf4])’* +

> ADR(81[2, 3} ADH{82{3, 31 (s[41)*") /

> (ADRi82[3, 3] JACR104(S] - ADHi2{2, 3] JACRfO4[6D)

(s(21)"7 => (~JACRL{4[5) - JACRI04[5] (betaf3])’’ +

> JACR101[5] (delta(3])*' + ADHi81[2, 3] (s[41)*’) / ADH{82(2, 3]
(betaf[4]) "’ >

124

> (-JACR114[4] - JACRL04[4] (bata(3])'’ ¢ JACR101{4] (deltaf3])’’ -
> ADHiB2{1, 3] (a[2])’* + ADH181[1, 3] (s[4]}**) / at

(phi[5])* -> (~(ADHI78[3, 3] JACRL14[2]) + ADHL7&[2, 31 JACRI14[3] -
> ADH{78[3, 3] ADH185[2, ] (betal3])’’ ¢

> ADH178(2, 3] ADHIBS[3, 1] (betal3])'’ +

> ADHL78[3, 3) ADHI79[2, 1] (delta[3])’' -

> ADH178[2, 31 ADKL79[3, {] (delta[3])??) /

> (ADRi7E[3, 3] Cos(phil4]] - ADHi78([2, 3] Sin[phi[4]D)

(phif61)° -> (~JACRi14{2] - ADRI85[32, 1} (beta[3])’’ +

> ADHI79(2, 1]} (delta[3])’' - Cos{phi[4)]1 (phil5})**) / ADR178[2, 3]
(phi{4])*’ -> -JACRL14[1] - ADHLEO[(, 1] (beta[3])'’ +

> ADHE80[Y, 1] (delta{3])*’ - Sinfphi[51} (phi[6])’*

d Cos(beta[12]]

ADH213(3, 4] ->
2

d Coslbetal10]1

ADH2L7(3, 4] -> -=mmmmemmcmmmne

ADH212(2, 4] -> -(ADH213(3, 4) Sin[beta[t1]])
ADHL99[3, 4] -> h2 Sin[deltafa]]

-(f Sin[doltaf4]1)
ADH2OT[3, 4] -3 =mm-mmmm—smmmmmeen

ADH21[2, 4) -> -b2 + ADH2{2[2, 4]
ADH212[2, 1] => Sin[betalf1]] Sin{betali2]
ADH212[2, 3] -> -(Cos[betal12]] Sin[betal{t]l])
ADH212(3, 1] => -(Cos[bata[11]] Sin[betafi2]])
ADH212(3, 3] => Cos[bata(i1]) Cos[beta[12]]
ADH2(2[3, 4] -> ADH213[3, 4} Cos[betal11l]
ADH216{2, 1] -> Sinlbeta[9]] Sin[beta[10)]
ADH216[2, 3] -> -(Cos[beta{t0]] Sinfbeta[9]])
ADH216[2, 4] -> ~(ADH217[3, 4] Sin[beta[9]])
ADH216[3, 1] => -(Cosfbetal9)] Sin{beta{i0]])
ADH216{3, 3] -> Cos[beta[9]] Coslbeta[10}}
ADH216(3, 4) -> ADH2{7[3, 4] Cos[beta[9]]

a2 Sinf{phiff0]]

M

ADH{91[2, 41 -

ADHISL[3, 4] =5 —mmmmmmmmemean

ADHISE[S, 4] -> ~h3 + ADH159(3, 4]
ADH199(2, 4] => h2 Cos{deltaf3]]
ADN206(3, 4] -> h4 + ADH207[3, 4]
=(f Cos[dalta[4]]}
ADH207{2, 4] -5 ==m--=m=mmmommmmes

ADH210[2, 1] -> ADH212(2, {} Cosl(delta{2]] - ADPH212[3, 1] Sinldelta[2]]
ADH210[2, 2] -> Cos[betal[11]] Cosl[delta{2]] - Sin[betal1i]] Sinfdertal2]}
ADH210[2, 3] -> ADH2t2[2, 3] Cosl[delta[2]] - ADH212[3, 3] Sinldelta[2]]
ADH210[2, 4) -> ADH211[2, 4] Cos[deltal2]] - ADH212[3, 4] Sinl(delta(2]]
ADH210[3, ] -> ADH213[3, {] Cosl[deltaf2]] + ADH212[2, 1] Sin[delta[2]]
ADH210{3, 2] -> Cosl[deltal2)] Sinfbetalit]] + Cos[beta[1il] Sin{delta{2]]
ADN210[3, 3} -> ADH212{3, 3] Cosldeltaf2]] + ADH212[2, 3] Sin{delta[2]
ADH210[3, 4] -> ADH212[3, 4] Cosldelta[2]} + ADH211[2, 4] Sinldelta[2]]
d Sin[betal12}}
ADH213(1, 4} => == S
2
ADH215{2, 1] -> ADH216(2, 1) Cozl[deltal1]] - ADH216[3, 1] Sin[delta[i]]
ADN215(2, 2) -> Cosfbeta[9}] Cos[delta[t]] - Sin[beta[9}} Sin[deltaft}]
ADM21S([2, 3) -> ADH216{2, 3] Cosldelta[1]] - ADH216{3, 3] Sin{delta{il]
ADH215(2, 4} ->
> ADH72(2, 4] + ADH2i6(2, 4] Cos(delta[i}] - ADH216[3, 4] Sin[delta[1]]
ADH215([3, 1] -> ADH216[3, 1] Cos[delta[i]] + ADH216[2, 1] Sinfdettal[i]]
ADH2(5(3, 2] -> Cos[deltafi]] Sin[beta[9]] + Cos[beta[9]] Sinl[deltal1l}
ADH21S[3, 3] -> ADM2(6[3, 3] Cos[delta{t]] + ADN216[2, 3} Sin[deltafi]}
ADH215(3, 4] ->
> ADH72{3, 4] + ADH216(3, 4] Cosldeltal1l) + ADH2i6[2, 4] Sin(delta(i]]
d Sin[beta[10])
ADH217[1, 4] => ==r=m==mcmmmenn

ADHE9[1, 3} -> -(Cos[phif12]] Sinlphi{1Lld)
ADHES[2, 31 -> Sin[philti]] Sinfphil12]]

ADHI142, 3] -> -(Cos[betal6]] Sin[beta[5}))

ADH114[3, 3] ~> Cos[betalS}) Cos[beta[6]]

ADH{43(2, 3] -> ~(Cos{beta[2}] Sin[betal1]])

ADH143(3, 31 -> Cosfbeta[t]] Cos[bata[2]]

ADHI7L[2, 3} -> =(Coz[beta[4]] Sin[beta[3]])

ADHITL[3, 3} -> Coz[beta[3]] Coslbetaf4]]

ADHi£9(1, 2} -> -(ADMEO[1, 3] Sin{phi{1011) + Cos[phi[10]] Sin[phili2]]
ADHI2S[1, 3] -> ADH89(1, 3] Coslphil10]] + Sin[phi{10]1] Sin[phil(i2}]
ADHI8O([1, 4] -> ADHi9i([3, 4] ADHSS([1, 3) + ADHi91{2, 4) Sin[phil{2]]
ADH189[2, 2] => Cos{phi[10]) Cos[phi[12]] ~ ADM89[2, 3] Sin[phili0}]
ADH189([2, 3] -> ADHB9[2, 3] Cos[phi[10]l) + Cos[phi[12]] Sinlphi({i0]]}
ADHi29{2, 4] -> -12 + ADHIS{[3, 4] ADH89[2, 3] + ADRiS1(2, 4] Cos{phili2]}]
ADHiR9{3, 2] -> -(Cos(philif]] Sin[phi[f0]])




ADHiBO([3, 3] ~>
ADH189(3, 4] ->
ADH{92(2, 4] ->

ADH193{1, 4) ->

ADHiI94([1, 4] ->

ADHi9S[1, 4] ->

ADH196{2, 4] =>
ADHi97(3, 4] ->
ADH200(2, 2] ->
ADH200(2, 3] ->

Cos[phi[10]] Cos[phili1]]

13 + ADHI91(3, 4] Cos[phi{11]]

=12 - 14
at Sin[betal2])

al Sin{beta{6]]
-1+ -

2
-12 - 24 + ADH199(2, 4]
ADR198(3, 4] + s([4]
Coafdelta{1]] Cosfdeltal[31]1 - Sin{delta[t]] Sin{delta{3l}

>  -(Cos[delta[3]] Sinldelta[1]}) - Cos[delta[1]) Sin{delta[3]]

ADH200[2, 4] ->
ADH200(3, 2] ->
ADH200(3, 3] ->
AbH202(2, 2) ->
ADH202[2, 3] ->

-12 - 14 + ADHi99[2, 4]

Cos[deltal3]] Sinfdelta[{]] ¢ Cos[deltali]) Sin{delral3])
Cos[delta(1]] Cosfdelta[3]) - Sinfdelta(i]] Sin{delta(3]]
Cozfdelta[2]] Cosl[delta{3]) - Sinfdelta[2]] Sin{delta(3]]

>  -(Coslfdeltal3]} Sinldeltal2]]1) - Cosldelta[2]] Sinldelta(3]]

ADH202(2, 4] ->
ADH202(3, 2] ->
ADH202([3, 3} ->
ADH204([2, 4} ->
ADR20S([3, 4] ->
ADH208[2, i} ->
ApH208[2, 2] ->
ADH208[2, 3] ->
ADH208[2, 4] ->

-12 = 14 + ADHi99(2, 4]

Cos{delta[3)] Sin{delta{2]] + Cosldelta[2]] Sin(delta[3]]
Cos{delta[2]] Cos{deltal3])} - Sinfdelta[2]] Sin[delta[3]]

-12 - 14 + ADH207(2, 4]
ADH206[3, 4] + s{4]
ADH210[2, 1] Cos{delta(3]]
ADH210[2, 2] Cosldelta[3]]}
ADH210(2, 3] Cos{deltal3]]

> =12 - 14 + ADH199[2, 4] + ADH210{2, 4]
> ADH210{3, 4] Sinl[delta[3]]

ADH208[3, 1] ->
ADH208(3, 2] -
ADH208[3, 3] -
ADM209([L, 4} ->
ADH214[2, 1] -
ApH214[2, 2] -
ADH214[2, 3] -
ADH214[2, 4] ->

v v

v v v

ADH210[3, 1] Cos{delta[3}]
ADH210(3, 2] Cos{delta[3]]
ADH210(3, 3] Cosl[deltal3]]
-g + ADM213[{, 4]

ADH215[2, 1] Cos(delta[3}]
ADH215[2, 2] Cos[delta[3]]
ADH215(2, 3] Cos[deltal3]]

> =12 - 14 + ADH199[2, 4] + ADH2{5[2, 4]
> ADH21S(3, 4) Sin[delta[3]]

ADR214(3, 1] =>
ADH2{4[3, 2] ->
ADH214[3, 33 ->
ADH215[1, 4] ->
ApH218[2, 1] ->
ApH218[2, 3] ->

ADH218[2, 4] ->

ADH218[3, 1] ->
ADH218[3, 3] ->

ADH215[3, 1] Cos{deltal3])
ADH215(3, 2} Cos{deltal3]}
ADH215([3, 3) Com[delta(31]
g + ADH21TI1, 4]

Sin(deltaf4]] Sinldeltafs]]

- ADM210{3, 1] Sin{delta[3]]
- ADH210[3, 2] Sin(deltal3]]
- ADK210(3, 3] Sin(delta(3]]

Cos(deltal3]] -

+ ADH210{2, 1] Sin[delta[3]]
+ ADH210{2, 2] Sin[delta[3]]
+ ADH210{2, 3] Sin[delta(3]]

- ADR215(3, 1] Sin[delta[3]]
- ADH215[3, 2} Sin[delta[3]}
- ADH21§[3, 3] Sinl[deltal3]]

Cos[delta[3]] -
+ ADH215[2, 1] Sin(delta[3]]

+ ADH21512, 2] Sinl[deltaf3]]
+ ADH215[2, 3) Sin[delta[3]]

~(Cos[delta(5]] Sinldeltal4]])
f Coz[deltal4]]

~12 - 14 + ADH207(2, 4} - -

2

-(Cos[deltal4]]) Sin[delta[5]])

Cos[delta[4]] Cosfdelta[5]]

ADHBO[1, 1] -> Cos(phi[11]] Cosfphif(2]]

ADHES[2, 1] -> -(Cos[phil11]]) Sinfphilf2]])

ADHi93[2, 4] ->

ADH193[3, 4] ->

ADH194(2, 4] ->

ADHiS4(3, 4] ->

ADHE95([2, 4] ->

ADH195(3, 4] ->

ApH208{3, 4] ->

ail ADH143(2, 3}

2

............... + =[1}

al ADRL71{2, 3]

2
ai ADHI7I[3, 3)
"""""""""" + s{2]

2
al ADH114[3, 3]

>  ADH197[3, 4) + ADH210(3, 4] Cos[delta{3)] + ADH210{2, 4] Sin[delta(3]]

ADH214[3, 4] ->

>  ADHi97[3, 4] + ADH215([3, 4] Cos[delta[3]] + ADH21S{2, 4] Sin(delta{3]]
f Sinfdelta[4]]

ADH218[3, 4] ->

B201, 1) =>
B2[i, 21 -> 0
R2(1, 3] => 0
R2(2, {} => 0

ADH205[3, 4] - -
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R2(3, 2] ~>
R2{2, 3] ->
R2[3, (] ->
R2(3, 3] =>
R2(3, 3] ~>
&3(t, 1] ->
%3[f, 3] ->
’3(f, 3} ->
R3[2, 1] ->
R3[2, 3) ->
R3[2, 3] ->
R3[3, 1} ->
R3[3, 2] >
R3(3, 3] ->
Re{1, 1] =>
R4[1, 2] ->
R4(t, 3) ->
Re(2, 1] ->
R4[2, 2] ->
R4[2, 3) ->
R4[3, 1) >
R4[3, 2] >
R4[3, 3) >
RS[{, 1} -> ADHES[L, 1]
RS[t, 2} -> ADReS{1, 2]
RS(1, 31 -> ADH{£S(1, 3]
RS[2, 11 -> ADHBO{2, 1)
RS[2, 2] -> ADHig9[2, 2]
R5{2, 3] -> ADHiB9[2, 3)
RS{3, 1] => Sin{phil{1]]
RS{3, 2] -> ADH189(3, 2]
RS{3, 3] -> ADHi89([3, 3]
R6{1, 11 ->
R6(L, 21 ->
R6(t, 3] ->
r6[2, 1] ->
R6[2, 21 ->
R6[2, 31 ->
R6[3, 1] ->
R6[3, 21 ~>
R6(3, 3) ->
R7(1, 1] => Cosfbata[2]]
R7(1, 2} -> 0

R7[{, 3] -> Sin[beta[2]]
R7[2, 11 -> ADH143[2, i1
R7[2, 2] -> Coslbetal{]]
R7{2, 3] -> ADM143([2, 3)
RT{3, 1} -> ADH143[3, 1]
R7(3, 2] ~> Sin[beta[i])
R7[3, 3] ~> ADH143[3, 3}
R3[{, 1] => Cos[beta{4]}
Refi, 2] -> ¢

R8(1, 3] -> Sinlbatal(4]]
R8[2, 1] -> ADH{7i{2, 1]
R8[2, 2} => Cos[beta[3]]
R8[2, 31 -> ADH17([2, 3)
R8[3, 1] -> ADH171(3, 1)
RE[3, 2] -> Sin{beta[3)]
R8[3, 3] -> ADM171[3, 3)
RO[1, 1] => Cos[betal6]]
RolL, 2} -> 0

a9[1, 3} -> Sin[betafs]]
w9(2, 1) -> ADHL14(2, 1]
19{2, 2] -> Cos[betal5]]
R9[2, 3] -> ADH{i1412, 3]
R9(3, 1] -> ADH114[3, 1}
R9(3, 2] ~> Sin[beta(5]}
R9{3, 3] -> ADH{14[3, 3}
RIL(E, 1] -> 1

Rif{L, 21 >0

RELQL, 3] -> 0

mi(z, ] => 0

RI1[2, 2] -> Cos[delta(3]}
R{1(2, 3} -> ~Sinl[delta(3]]
RUL[3, 1] => 0

RIL[3, 2] -> Sin(deltal3}]
Ri1{3, 3] -> Cos{deltal3)]
Rtoft, £} -> 1

r10[1, 2] -> 0

rioft, 31 -> 0

Riof2, (] -> 0

R10[2, 2] -> ADH200(2, 2]
R{0[2, 3} -> ADH200{2, 3]
R10[3, 1] -> 0

R10[3, 2] ~> ADH200[3, 2]
R10(3, 3] -> ADH200(3, 3]

-~ 0 00~ 000 "0 00000 =00 O M

-~ 0 0 0= 000 m




R12(1, 11 > 1

Ri2[1, 2] => 0

Ri2{1, 3] => 0

R12{2, 11 -> 0

Rt2f2, 2] -> ADH202(2, 2]
Ri2[2, 3] -> ADH202(2, 3]
r12{3, 1] -> 0

R12(3, 2] -> ADH202(3, 2}
RL2(3, ADH202{3, 3]
r13[1, 1} => 1

RI3[1, 2] ~> ©

RI3(1, 31 => ©

Ri3{2, 1] => ©

R13[2, 2] -> Cos[deltal4]]
R13(2, 3] -> -Sin{deltal4]}
R13(3, 1] ~> 0

R13[3, 2] -> Sin[delta[4]]
RE3[3, 3] -> Cos[delta[4]]
Ri4[1, 1] -> Coslbeta{i2]]
R14[1, 21 -> 0

R14[1, 3] -> Sin[betal12]]
Rt4(2, 11 -> ADH208(2, 1)
Ri4[2, 2] -> ADH208(2, 2]
R14(2, 3] -> ADW208(2, 3}
R1413, 1] -> ADH208(3, 1]
R14{3, 2] -> ADH208[3, 21
Ri4(3, 3] -> ADH208[3, 3]
RIS[L, 1] -> Cos{beta[10]}
RIS[1, 3] -> ©

RIS[1, 31 -> Sin[betali0]]
®i5[2, 1] -> ADH214[2, 1]
R1S{2, 2] -> ADH214(2, 2]
RIS[2, 3] -> ADH214(2, 3]
RIS[3, 1] -> ADH214(3, 1]
RI5[3, 2] -> ADH214(3, 2]
RI5[3, 3] -> ADH214(3, 3}
R{6{1, 1] -> Cosfdelta[5]]
Ri6[1, 2] -> ©

R16{1, 3} -> Sin{delta{5]]
R16(2, 1] -> ADH218[2, 1]
Ri6[2, 2] ~> Cos[delta[4]]
Ri6[2, 31 -> ADH218[2, 3]
Ri6[3, 1] -> ADH2{8[3, 1]
R16{3, 2] -> Sinfdeltal4]]
R16(3, 3] -> ADN218(3, 3]
r2(1] -> 1t

r2(2] -> o0

r2[3] -> =(1)

r3[1] -> o

r3{2] -> 0

raf3} -> s[2]

41l -> -1t

r4[2] => 0

r4{3] -> s[3}

@
‘
v

M

M

r5{1] ~> ADH189{{, 4] ADMSS[t, f] + ADHISS[2, 4] ADHSS[2, 1] +

> ADH189(3, 4] Sinlphilti}]

rS[2] -> ADHi89[1, 2] ADH189[1, 4] + ADH189(2, 2] ADHie9[2, 4]

> ADH1E9[3, 2] ADMIB9[3, 4]
r5[3] -> ADH189(1, 3] ADHi29{i, 41
> ADHi8S9[3, 3] ADMiB9(3, 4]
6[4] => 0

r6[2] ~> ADNi92(2, 4]

ré6[3] -> s{4]

x7(1] -> ADH143[2, 1) ADRL93[2, 4]
> ADHi93{1, 4) Cos[beta[2]
r7[2] -> ADH193[2, 4] Cos[beta[1]]
r7{3) -> ADHI43[2, 3] ADH193[2, 4]
> ADH193[f, 4] Sin{beta{2]}
r8{1] -> ADH17{([2, 1] ADHi94[2, 4]
> ADHI94[1, 4] Cos[betal4]]
r3(2] -> ADH194[2, 4] Cos[beta[3]]
r8{3] -> ADHI71{2, 3] ADH194[2, 4]
> ADH194[1, 4] Sin[betaf41]
ro[1] -> ADH114{2, 1) ADH195(2, 4]
> ADH195(i, 4] Cos[beta[6]]
r9{2] -> ADHiI9S[2, 4] Cosfbetal5]]
r9{3] -> ADH{14[2, 3] ADRI9S(2, 4
> ADHISS(t, 4] Sin[bera[6]]
rii[1] -> 0

+

+

-
+

-

+

+

+

+

+

rii{2) -> ADH196[2, 4] Cos[delra(31}
rit{3] -> ADR{97[3, 4] Cos[deltal3]}

rioft] -> g

ADK189[2,

ADH143(3,

ADHE93[3,
ADHI43(3,

ADHITL[3,

ADHI94[3,
ADHI7L[3,

ADH114(3,

ADH195(3,

31 ADHi89[2, 4]

1] ADH193[3, 4]

4] Sin{betafi])
3] ADH1S3([3, 4]

1] ADHi94(3, 4]

4] Sin[beta[3)]
3] ADHI94[3, 4)

1] ADHISS[3, 4]

4) Sin[beta[S}]

ADHI14(3, 3) ADH195{3, 4]

+

+

+

+

+

+

"

+ ADHEOT[3, 4] Sin[delta(3]]
- ADM196[2, 4] Sinldelta[3]]

r10(2) -> ADH200[2, 2] ADH200[2, 4] + ADHIS7[3, 4] ADH200(3, 2]

ri0[3] -> ADH200[2, 3} ADH200[2, 4] + ADH1S7(3,

ri2(1] -> -g

4] ADH200[3, 3]

r12[2) -> ADH202{2, 21 ADH202{2, 4] + ADH1S7[3, 4] ADH202(3, 2]
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ri2[3] -> ADH202{2, 3] ADH202[2, 4} + ADH1S7(3, 4] ADN202[3, 3]

r13{1) -> 0

ri3[2} -> ADH204[2, 4] Cos[deltal4]] + ADH20S(3, 4) Sinldelta(4]}
r13[3] ~> ADH205(3, 4] Cos(delta(4]] - ADH204{2, 4] Sin[delta[4]]
ADH208(3, 1] ADH208[3, 4] +

ri4[i] -> ADH208[2, {] ADH208[2, 4]
> ADH209[1, 4] Cos[beta[f2]]
r14[2) -> ADH208[2, 2] ADH208(2, 4]
r14(3} -> ADH208(2, 3] ADH208(2, 4]
> ADN209(1, 4] Sin[beta[i2])
ri5[{] -> ADR214[2, 1] ADH214[32, 4)
> ADH215[1, 4] Cos[beta[10]]
r15{2] ~> ADH214(2, 2] ADH214[2, 4]
r15[(3} -> ADH214[2, 3] ADH214[2, 4]
> ADH215{1, 4] Sin[beta[10]]
r16E1] ~> ADH21S[2, 1] ADH218[2, 4]

+

+

+

*

+

ADH208[3,
ADH208(3,

ADH214(3,

ADH214[3,
ADR214[3,

ADH218(3,

2}
3)

1]

2}
31

1]

ADH208(3, 4]
ADH208[3, 4] +

ADH214(3, 4] +

ADH214{3, 4]
ADH214(3, 4]

ADH218(3, 4]

rt6[2] -> ADH218(2, 4] Cos[delta[4]] + ADH21B{3, 4] Sin[delta[4]]
ri6{3] -> ADH218[2, 3] ADR218[2, 4] « ADH2t8[3, 3} ADH21B{3, 4]

ADH18[3, 4] -> ~(b2 Sin[beta{1{]])
ADH49[3, 4] -> ~(b2 Sin[betal9I])

ADH{T{L, 4} -> -(ADHI2[3, 4] Sin[beta{12]]))

ADH17(3, 4] -> ADH{B([3,
ADHI8[2, 4] ~> b2 Coslbetal11]]
ADH245[3, 4] -> -(b2 Sin[betal9]])

4] Coz{beral12]]

ADH4E[{, 4] -> -(g Cos(beta(10]]) - ADH4S([3, 4] Sinlbeta{i0]]
ADH48[3, 4] -> ADH49(3, 4] Cosfbeta[10]] - g Sinfbeta[10]]

ADH4912, 4] -> b2 Cos[beta[s}}

ADH244(3, 4] -> ADH245{3, 4] Coz[beta{10]]

-d
ADR238([3, 4) -> -- + ADH36[3, 4]
2

ADH239([1, 4] -> -(h2 ADHIT[{, 2]) + ADHiT{{, 4} + g Coslbetali2]]
ADH239[2, 4] ~> -(h2 ADHiI&([2, 2]) + ADMig([2, 4]

-d

ADH238{3, 4] -> -- - h2 ADHA7[3, 2] + ADHI7(3,

2
~d

ADH243[3, 4] -> -- + ADH244[3, 4]
2

ADH244[1, 4} -> -(ADH245[3, 4] Sin[beta{10)})

ADH245[2, 4 b2 Cos{beta[9]]

ADH246[1, 4

o
v v

=(h2 ADH42({, 2]) + ADH4B[1, 4]

ADH246(2, 4] -> -(h2 ADH4S[2, 2]) + ADH49[2, 4]

-d

4] + g Sin[beta[12])

ADH24613, 4] -> -- - h2 ADH48[3, 2] + ADH4B[3, 4)

2

ADH224(1, 31 -> -(Cosfbeta[1]] Sinl[betal2]])
ADH224[3, 3] -> Cos[betal1]] Cos(betra[2]]

ADH237([{, 3

'
v

-(Cos[betal3]] Sin{betal4]])

ADH227[3, 3] -> Cog[beta[3]] Coslbetald]]
ADH230[{, 3] -> -(Cos({bata{5]] Sin[bata[6]1])
ADH230(3, 31 -> Cos[beta[5]] Cosl[beta[6]]

ADH233([2, 3] -> Cos[delta[3]]) Sin[deltalt}
ADH233[3, 3] -> Cos[delta[{]] Cos[deltaf3]] - Sin[delta[1]] Sin[deltaf3]]
ADH234[2, 3] -> Cos[delta[3]) Sinldeltal2)]
ADH234[3, 3] -> Cos{delta[2]] Cos[delta[3]] - Sin[delta[2]] Sin[delta[3]}

¢ Cosl[deltal1)) Sin{delta[3]}

+ Cos[delta[2]] Sinfdelta(3]]

ADH240{1, 3] => ADHI7[{, 3] Cos[delta[3]] + ADHiI7[1, 2] Sin[delta[3}]
ADH240[2, 3] -> ADHi&[2, 3] Cos(dalta(3]) + ADH{8[2, 2] Sinl{deltal3]]

ADH240[3, 3] -> ADNI7{3, 3] Cos[deltaf3]]

ADH17[3, 2} Sinl[delta[3]]

+
ADH247[1, 3) -> ADH48{f, 3] Cosldelta[3]1] + ADH48[{, 2] Sin(delta[3]]
+

ADH247[2, 3] -> ADH49[2, 3] Cosldelta[3]]

ADH49{2, 2] Sin[delta[3])

ADH247[3, 3] -> ADN48[3, 3] Cos([delta[3]] + ADH4B[3, 2) Sin[delta[3]}
ADH2S0{1, 3] -> -(Cos[delta[4]] Sin{delta(S}D)
ADH250{3, 31 -> Cos{delta[4}] Cos{delta(5]]

a2 Cos[phi[10}}
JACR119[4] > ~=mmecwcmmceean

a2 ADHso([2, 3]

JACRL20[4]
JACRI20(5] => =====-msmmmmeemann

JACR123[5] -> ===m-mcmemcmeme——e

-(at Coslbeta[4]])

JACRI26(5] -> - -
2

-(at Cos{betal6l])

JACR{29[5] ~» ==mmro--ssomsmmnns

JACR{42{S] = --=m=mmsnemeecnes

JACR143(4) ~-> ADM37[2, 4] Sin{betal12]]
JACRI43[5) -> ADN238[3, 41 Cos(beta[12]] - ADH36[1, 4) Sin[betali2]]




JACR143[6] ~> -(ADH37(2, 4] Cosfbeta[12]))
JACR14474] -> ADH239{2, 4] Sin[beta(i2]]
JACRI44({5) -> ADH239[3, 4] Cos[betaf12]] - ADH239([{, 4] Sin[beta(12]]
JACR144[6] -> - (ADH239[2, 4] CosIbetali2]])
-(d Cos[beta{10]])
JACRI47[S]} =5 ~wsmsmmmmmmmcoeeeee

v v v

JACRL4E[4] -> ADH245(2, 4] Sin[beta[io0]]
JACRI4E[5] -> ADH243[3, 4] Cos[beta{10]] ~ ADH244[1, 4] Sin[beta[i0]]
JACRi48[6) -> -(ADH245{2, 4] Cosz[beta[i0]]))
JACR149{4) -> ADN246[2, 4] Sin[beta[10]]
JACR149[5) -> ADH246[3, 4] Cos[beta[10]] - ADH246(t, 4] Sin(betal10]]
JACRI4916] -> -(ADH246{2, 4] Cosfbeta{1011)
JACRL52(4) ~> f Sin[delta(s]]
JACRIS52[6] -> ~(f Cos[delta[5]])
omega2[{] ->
omega2([2] ->
omega2[3] ->
omega3(1] ->
omega3[2] ->
omega3{3] ~>
omegad (1] ->
omegad[2] ->
omegad (3] ->
omagaS(1] -> -(phi[10])* ~ Sin[phil11]] (phil[t2])’
omegaS(2] -> ~(Cos[phil10}} (phil11])*) - ADHSO[2, 3] (phi[i2])*
omegaS[3] -> ~(Sin[phi[10}] (phi[11])’) - ADHSO([3, 3] (phili2])*
omega6[1] => 0
omegab[2]) -> ¢
omega[3) -> 0
omega?[1] -> Cos[beta[2]] (beta[1])’
omaga7[2] => (beta[2])'
omega7[3]) -> Sin{beta[2]) (betaliD)®
omaga8[1] -> Cos[beta[4]] (betal3])’
omegaB{2] ~> (betal4])®
omegaB{3] -> Sin[beta[4]] (bata[3])’
Coa[beta(6]1] (beta(S5])’
omegas[2] ~> (beta[6])?
omegag[3} -> Sin[beta[6]] (beta{5])’
omegall[1} -> (delta[3])’
omegall[2] -> 0
omagaii[3) -> 0
omegalO[i) -> (delta{1])’ + (delta(3])’
omegal0f2) -> 0
omegal0[3} -> 0
omegai2{1] -> (delta[2])’ + (delta[3))’
omegat2(2] -> 0
omegat2(3] -> 0
omegal3{1] -> (delta[4])*
omegat3{2] -> ©
omegat3[3] -> 0
omegal4[1] -> Cosfbeta[12]] ((beta[ii])’ + (deltaf2])? ¢ (delta[31)")
omegata[2} -> (beta{i2])’
omegal4[3] -> Sinlbetal12]} ((beta[11})* + (deltal2])’ + (delta[3])’)
omegalS[1} ~> Cos[beta(10]] ((beta[8])’ + (deltalL])' + (deltaf3])’)
omegal5{2] -> (beta[10])*
omegalS[3] -> Sinfbeta(10]] ((betal81)’ ¢ (delta{i])’ ¢ (delta[3])")
omagal6[1] -> Cos[deltal[S]) (delta[4])’
omegal6[2] -> (delta[S])?
omegal6[3] ~> Sin[delta(S]] (deltal4))’
v2{t] > 0
v2[2] > ©
v2{3] -> (s(1])’
v3[i] > o
v3[2] -=> ©
v3[3] -> (sl(2])’
v4fi] -> 0
vaf2] -> 0
v4[3] -> (s[3])’
vS[1] -> -(JACR119[4] (phil{11)’) - JACRL120[4] (phifi2])’

a2 (phi[10])’
v§[2] => —=----momm—as - JACR120[S] (philt2])’

2

oo o000 ooo

v v v v

owegasli] -

v v

vS[3] -> 0
v6{i) -> 0
v6[2] -> 0
v6[3] -> (s[4])’
at (beta[2])?

v7[1] -- + ADH224(f, 3] (s[1])’

2
v7[2] -> JACR123[5] (betalil)’ + Sin(betal1]) (s(i])
v7[3] -> ADH224(3, 3] (s[1])»*
al (beta[4])’
¥B[1] ~> ===mmmmceemes + ADH227[1, 3] (s(2])’

v8[2] ~> JACR{26[5]) (beta[3])’ + Sinfbeta[3]] (s[2])’
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v8[3) ~> ADH227(3, 3] (a[2])’
al (beta[6])*
¥O[1] => =rmeemmcmmme= + ADH230(1, 3] (s[3])*

v9[2) -> JACRI28(5] (beta[5])' + Sin[betalS]] (s[31)’
¥9{3]) -> ADH230(3, 3] (s[3])’
vit{t] -> o
vi1{2] -> Sinldelta[3]]) (s(4])’
vitf3] => h2 (delta{3])’ + Cos[deltal3]} (s[4])’
vio(1] -> ¢
vi0[2] -> ADRISI[3, 4] (delta[3])’ + ADH233([2, 3] (s[4])’
vi0[3] -> ~(ADHIS1[2, 4] (delta[3])’) + ADH233{3, 3] (=[4])'
vi2[1) > 0
vi2[2] => ADRH10S[3, 4) (deltal3])’ + ADH234[2, 3] (s[4])®
v12(3) -> ~(ADH109[2, 4] (delta[3])*) + ADK234(3, 3} (s{4])®
vi3[1] -> o
v13(2) ~> Sin{delta[4]] (s[4])’
=(f (deltal4])*)
vi3[3] =5 mmmmmmmmeomoemee + Cos[deltaf4]) (s{aD)’

d (beta[12])*
vi4[1] -» =--=--mmm-eee + JACR143{4] (deltal2])’ +

> JACR144[4] (delta{3])' + ADH240({, 3] (s[4])’
vi4[2] -> JACR{42([5] (betafff])’® + JACRI43[5} (delral2])’ +
> JACR{44[5) (deltal3])’ + ADH240[2, 3] (s[4]1)’
v14[3] -> JACRI43[6] (delta[2])’ + JACRI44(6] (delta[3])’ ¢
> ADH240[3, 3] (s[4])’

d (beta[i10])*
vi5[1] => ====mmewe—ea— + JACR148[4] (delta[i]l)’ +

> JACRI49[4] (deltaf3])’ + ADH247T[1, 3] (a[4])’
vi5[2) ~> JACR{47[5] (beta[9])* + JACR148(5} (delta[i])® +
> JACRL49([5] (delta[3])’ + ADH247[2, 3] (s{4])’
vi5{3] -> JACRL48[6] (delta{i])’ + JACR149(6) (delta{3])’ ¢
> ADH247([3, 3] (s{4])’
vi6{1] -> JACRI52[4] (deltaf4])’ + ADH2SO[{, 3] (s[4])’
vi6[2] -> Sin[delta[4]] (s[4])’
vi6[3) -> JACRIS2[6] (delta[4])’ + ADH2S0(3, 3] (s[4])!
-(a2 ADH30(3, 3) (phil10])*}
JACR160(4] -> +
2
> ADHO0[3, 3] JACR120{5] (phil{2])’
JACRL60[8] => -(ADH9O[3, 3] JACRL19[4] (phif(i])?) -
> ADHOO[3, 3] JACRi20(4] (phi{i2])’
a2 Sin{phift1]] (philio))?
JACRL60{E] => ~m=m===o=m=meesmmomooooo-o +

> ADHSO[2, 3) JACRL19(4) (phil111)’ -
> (-(APHSO[2, 3] JACR120[4]) + JACRI20(5] Sin{phi{11]]) (philt2])*
JACRL61{1} -> ~((-(ADHSO[3, 3] Cos[phil1011) + ADH90[2, 3] Sinl{phi[10]])
> (phil12])) ")
JACRL61(2] -> Sin{phil10]] Sin{phi[11]] (phil12])*
JACRI61(3) => -(Cos[phil10]1]} Sialphi[11]} (phil{2])?)

~(a2 Sin[phi{10]] (phi[10])*)

v

JACR16114] -
2
JACRI61[8} -> ~(JACRL19(4] Sin[phili10]] (philiiD)*) -
> ADHOO[3, 3] JACRIL9[4] (phi{12])?
JACR161{6) ~> Cos[phi[10}] JACRL19[4] (philii])’ +
> ADHO0[2, 3] JACRI19[4] (phi[12])’
JACRI62[2) => -(Sin[phi[10]] (phi[111)*) - ADH30[3, 3] (phifi2])’
JACRL62[3] ~> Cos[phi{10]} (phili1])* + AbH90{2, 3] (phi{i2}>®
-{a2 Sin{phif10)] (phi(11])?) a2 ADHSO[3, 3] (phi[i2]}’
JACR162[4) -> -
2 2
a2 (phi[10]1)* a2 Sin[philt1]] (phifi2])’
JACR162{6] -> +
2 2
JACR(6T{4) ~> -(JACR123[S] Sinfbeta[2]] (betaltl)®)
ai Sinfbeta[2]] (betal2D)*

JACRLET(S] ->

2
JACR167[6] -> Cos[beta[2]] JACR123[5] (betalt]}*®
JACRi6E[1] => -(Sin[beta[2]]} (betalt])*)
JACRL68{3) -> Cos[beta(2]] (beta{il)’
ai Sin[betal2]] (betalil)’

JACR168[5]

JACR168(6]

JACRI71(4]) -> -(JACR{26[5} Sin[betal4]) (beta[3])’)
al Sinfberal4]] (betal4])®
JACRITL[S} => mmemmmmoommmomwmsnmmnmonns




JACRIT1[6) => Cos{beral4]] JACRI26(5] (beta{3])* >  Cosfbetal10]] JACR{4B[S} (deltali])’ +
JACRLT2[1] -> -(Sin[beta[4]] (beta[3])?) > Cos{beta(10]] JACRI49(5] (delta[3])’
JACR{T2{3] -> Cos[beta[4]] (beta[3])* JACR200[4] -> -(JACR{47[5) Sin[beta[f0]] (beta[s})’) -
at Sinfbeta[41] (beta(3])’ > JACRI4B[S] Sin[beta[10]]1 (delta(1])’ -
JACR{72[S] =5 =====mmmmmmomeoceereeeeee > JACR148[5) Sin[beta[10]] (delta[3])’
2 d Sinfbetal10)] (beta{10])*
-(at (beta[4])") JACR200[5] => ~-m--memmommoommmmeeceone +
JACRIT2[6] -> - 2
2 > (~(Coslbeta{{0]] JACR148[6]}) + JACR148[4) Sin[beta[10]])
JACRI7S[4] -> -(JACR129[5) Sin[beta(6}] (beta[5])*) > (delta[1])* + (-(Cosl[beta{10]] JACR148[6]) +
at Sin[beta[6]] (betaf61)’ > JACR{48(4] Sin{beta[10]]) (delta[3])’
JACRL75{§] => =--=mmomm-momecmemcconoeo JACR200[6] -> Cos[beta(10}] JACRL47[5] (beta[s])® +
2 > Coslbeta[10]] JACRI48(S] (delta{i])’ +
JACRI7S[6] -> Cosfberal61] JACR129(S] (beta[5])” > Cos[beta[10)] JACRI4E[S} (delta[3])®
JACRI76{1] ~> -(Sin[beta[6]] (hetalS])") JACR201[4) -> -(JACR147[5] Sin[beta[10]] (beta[9])’) -
JACR176{3] => Cos([beta[6]] (beta[5))’ > JACR147(§] Sin{beta[10)] (delta{1])’ -
at Sin[betal6] (beta[s])’ > JACRI47[5] Sin[beta[10]] (delta[3])®
JACRI76[S] -> -- d Sin{beta[10]} (betalf0])®
2 JACR20A[S) =3 —==--mmmemmmmeomccmooeee
~(al (bera[61)') 2
JACRITG(6) ~> -- JACR201[6) -> Cos[beta[10]] JACR{47[5] (beta[9])’ +
2 > Coslbata(10]] JACRI47[S] (delta[i])’ +
JACRI7O[5] => -(h2 (delta[3])") > Coal[bata{10]) JACRL47[5) (delta[3])’
JACR182[5] -> ADH1S1[2, 4] (delta[3])* JACR202[1] -> -(Sinl[beta[10]] (beta[9])’) - Sin{[beta[10]] (deltalt])’ -
JACR182([6] -> ADHIS{[3, 4] (delta[3))’ > Sinlbeta[10]] (delta[3])’
JACRI86[5] ~> ADH109{2, 4] (delta{3))’ JACR202[3] -> Cos[beta[10]] (beta[9])' + Cos[bora[t0]] (delta[1])’ +
JACRIB6[6] -> ADH109[3, 4] (delta(3])’ > Cos[beta[10]) (delta[3])’
1 (delta[4])’ d Sin[betal[i0]] (beta[9])* d Sin{beta(10]] (deltafi})’
JACR{90(5) ~> JACR202[5) -> +
2 2 2
JACRE93[4] -> -(JACR142[5] Sinfbeta[12]] (beta[ifI})®) - d Sin[beta{10]] (deltaf3])*
> JACR143[5] Sin[beta{i2]] (delta(2]}’ - > mmmmmmmemmeeecmemeeeceee
> JACR144(5) Sin[betali2]] (delta{3])’ 2
d sin{beta[12]] (betal12])* ~(d (beta{10])?)
JACRI93[S] -> mmm-—mmmemmmmmmceemmmeoooo - JACR202(6) =y ==mmr==mm—o—m—ee
2 2
> (~(Cosfbeta[12]] JACR{43[61) + JACRI43[4] Sin[beta(12]]) JACR205(S) -> (-(Cosldelta[S]] JACR1S2[6]) + JACRI52[4) Sin[delta{S1])
> (delta[2])’ + (=(Cosfbeta[12]] JACRI44[6]) + > (delta[4])*
> JACR144{4] Sin[betali2]1]) (delta[3])’ JACR206[1] -> -(Sin[delta[5]) (delta{4])")
JACR193{6] -> Cos[beta{12]] JACRI142(5] (betal(f])’ JACR206[3] -> Cos[delta[5]] (deltaf4))’
> Cosfbeta[12]] JACR143[5] (deltaf2])’ + JACRI63(1} -> ~(JACRI61(1] (phill1))’
5>  Cos[beta{12]] JACR144[5] (deltaf3])’ JACRI63(2] -> -(JACR162(2] (phi[10])*) - JACRI61(2]1 (phil[il])?
JACRIS4{4] -> -(JACR142(5] Sinlbetaf12]] (bavafif])?®) - JACRI63[3] -> -(IACR162[3] (phil101)") - JACRLS1[3) (phil{i])’
>  JACR{43[S) Sin[beta(12}] (deltaf2])’ - JACRI63[4) -> ~(JACR162[4] (phi[10]>*) - JACRI61[4] (phili{])* -
> JACR{43{5] Sin(beta[i2]] (delta[3})’ > JACR160[4] (phil{2])*
d Sin[beta[12]] (berafi2])? JACRI63[S] ~> -(JACRI61[S] (phi{11])?) - JACRi60[5] (phi[12])’
JACRL94[S) =5 =--=smemmmmmmmmmmmemoeeoeo + JACR163[6] -5 -(JACR{62[6] (phi[10]>*) - JACRI61{6) (philit])’ -
2 > JACRL60[6] (phil121)?
> (-(Coslbetal12]] JACR143[6]1) + JACRI43[4] Sin[betaf12]]) JACR{69[1) -> JACR168[1] (beta[2])’
> (delta[2])’ + (-(Cos[betal12]] JACR143(6]) + JACR169[3] -> JACRI68[3]) (betra[2])’
> JACR{43[4] Sinfbeta[12]]) (deltai3d])’ JACRL69[4] -> JACRL6T{4] (betalt])®
JACRI94[6] -> Cos[beta[12]1 JACR142{5] (beta[{1))’ + JACRL63{S] -> JACRI67[S] (bata[1])’ + JACRIGEIS] (betal[2])*
>  Cosfbetal12]] JACR143(5] (delta[2])’ + JACR169[6] -> JACRI67{6] (betal1})’ + JACRI68[6] (beta[2])*
>  Cos[betal12]] JACR143[5] (delta[3])> JACRIZ3[1] -> JACRLT2{{] (beta[4])’
JACR195{4] > -(JACR142{5] Sinfbeta[12]] (heta[{1])’) - JACRIT3{3] -> JACR{72(3] (beta[4])’
> JACR{42(S] Sinfbeta(12]] (deltaf2))’ - JACRI73(4] -> JACRI7L[4) (bera(3})’
> JACR142[5] Sin[betal121} (deltaf3])’ JACRI73[5] -> JACRITL{S] (beta[31)® « JACRIT2[S} (betal4])’
d Sin[beta[12]] (betaf12])” JACR{73[6] ~> JACRL71(6] (beta[3])® + JACRI72[6] (betal41)’
JACRI9S[B] > —=mmmmmmmm—mmmeceooooeoee JACRLTTIL] => JACRIT6(1) (beta[6])
2 JACRITT(3] -> JACRI76[3] (beta(6])?
JACRL9S[6] -> Cos{betal12]] JACRI42[S] (betalfi])’ + JACRITT[4] -5 JACRI7S[4) (beta[S})’
>  Cos[batal12]] JACR142[S] (delta[2])> + JACRITT[5] -> JACRL7S[S] (beta[5])® + JACRI76(5] (betafs])’
> Cosfbetal12]] JACR142[5] (delta(3])’ JACRI77[6] -> JACRI7S[6] (beta[S1)® + JACRIT6[6] (betal6])’
JACRIS6{1] -> =(Sin[betaf12]] (beta[i11)*) - Sin[bera[i2]] (delta[2])’ - JACRI80[5] -> JACRL79[5] (delta[3])’
> Sin(betal12]) (delta(3))’ JACR184{5] -> JACR182(S] (delta[3])’
JACR196{3] -> Cos[beta{12]] (betal[1i])’ + Cos{betafi2]] (deltaf2])’ + JACRIB4{6] -> JACR132(6] (delta{3])’
> Cosfbeta[12]] (delta[3])’ JACR188(S] -> JACR186(5] (delta(3])’
d Sin(berali2]} (betaltt})’ d Sinfvetalt2]] (deltal2])’ JACR188(6] -> JACR(E6[6) (delta[3])’
JACRIO6([S] -> + + JACR1S1(S] ~> JACRI90[5] (deltaf4])’
2 2 JACRI97(1] => JACRL96{t] (beta[(2))®
d Sin{betal12]] (delta{3])’ JACRI97[3] -> JACR196{3] (beta[12])’
> - JACRI97[4) -> JACRI95[4] (betal[11])? ¢ JACR194{4] (deltaf2])* +
2 > JACRt93[4] (deltal3})’
-(d (betalt2])") JACRIST(S] -> JACRISS[5) (beta[11])’ + JACRI96[S] (beta{{2])’
JACR{S66] =D ==========cemmm- > JACRI94[5] (deltal2])’ ¢ JACRI93[5] (deltal3])’
2 JACR197[6] -> JACRI95{6] (beta[f{])* + JACRI96(6] (betaf12])’ +
JACR199([4] -> -(JACR147[5] Sinlbeta[10]] (beta(SD)*) - > JACRI9416] (deltaf2])’ + JACR193[6] (deltal3])’
> JACR148[5] Sin[beta{10]] (delta[1))’ - JACR203[1] -> JACR202[t] (beta[10])®
> JACR149[5] Sin[beta[10}] (delta[3))’ JACR203[3] -> JACR202[3] (beta[10])®
d Sin[bera[10}} (betaf10})’ JACR203[4] -> JACR201{4] (beta[9])' + JACR200[4] (deltal1])' +
JACRI99[S] => ===--=-oomoomoommooooeeooee + > JACR199{4] (delta[3])®
2 JACR203[5] -> JACR20t[S] (betaf9])’ + JACR202(S] (beta(10])’ +
>  (-(Cos{beta[10]] JACR148{6]) + JACR142{4] Sin[beta{10])} > JACR200[S] (delta[t])’ + JACR199[S] (delta[3])®
> (delta[1})? + (-(Cos{beta[10}] JACR143{61) + JACR203{6) -> JACR20L[6] (beta[9])*> + JACR202[6] (betal{0])’ +
> JACR149[4] Sin[betal101]) (deltal3])’ > JACR200(6] (delta[t])’ ¢ JACR199[6] (deltal3])*
JACR199[6] -> Coslbatal10]] JACRI4T[5] (beta[9])' + JACR207(i] -> JACR206[1} (delta[5])’
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JACR207([3] -> JACR206(3] (delta(S])’
JACR207[S] -> JACR205[5] (delta[4])’
alpha2[i] ->
alpha2[2] -
alpha2(3] -
alpha3[i] ->
alpha3(2] ->
alpha3[3]} ->
alphad[i] ->
alphad[2] ->
alpha4[3] -
alphaS(1] ~> JACRI63[t} - (phi{10]1)*> - Sin[phi{11]} (phi[i2]))’*
alphas(2] ~> JACR163[2] - Cos[phi{i0)) (phi[t1])’’ -

> ADHSO[2, 3] (phi{12D**

alphaS[3) -> JACR163{3] - Sinl[phi(10)) (phi(ti])’’ -

> ADRSO[3, 3] (phi{12])7”

alpha6({]l -» 0

alpha2] -> 0

alpha6(3} -> 0

alpha7f{} -> JACRI6S[1]) + Cos[beta[2]] (betaft])'’

alpha?[2] -> (beta[2])’’

alpha?[3] =-> JACRL6S[3]) + Sin[beta[2]} (beralt])*?

alphag[1] => JACRIT3[1] + Cos[beta[4]] (beta[3])"®

alphag[2] -> (beta[4])’?

alphag{3] -> JACR173[3] + Sin{beta[4]] (beta[3])*’

alphad(1] -> JACRI77[1] + Cos{bata{6]] (bera[5])’’

alphad[2) -> (betaf6])?

alphad9[3} -> JACRL77[3] + Sin[betal[6]] (beta[5))’*

alphat{[{] -> (delta[3]))'

alphait[2] -> 0

alphatt[3] -> 0

alphato[1] => (delta[i])!* ¢ (delta[3])*’

alphaio[2] -> ©

alphato[3] -> O

alphat2[{] -> (delta[2})’* + (delta[3])’?

alphat2[2] -> 0

alphaf2{3] -> 0

alphai3{1] -> (delta[4])*’

alpha13{2] -> ¢

alphai3{3) -> ¢

alphatd[t] -> JACRIS7T[1] + Cos[betal{i2]] (beta[i{])*’ +

> Cos[betafi2]] (delta[2])’* + Cos[betali2]] (delta[3])**
alphaf4f2] -> (beta[12))**

alpha{4[3] -> JACR197[3} + Sin[beta[f2]] (beta{i1])’’ +

> Sin[beta(12]] (delta[2])’’ + Sin{betafi2]] (delta[3])’’
alphai5(1] -> JACR203[i] + Cos[beta{10]] (beta[S])’’ +

> Cos[betaff0]] (delta[i])?’ + Cos[beta{10]] (delta{3})*’
alphai5[2] -> (beta[10])*’

alphal&[3] -> JACR203([3) + Sinl[beta[10]] (beta[9])’> +

> Sin{beta[10]] (delta[1})*’ + Sin[beta[10]] (delta(3])*’
alpha{6{(]) => JACR307[1} + Cos[delta[5]] (delta(4])’’

alphai6{2] -> (delva[5]1)?*’

alphal6(3] -> JACR207{3] + Sin{delta[S]]) (deltaf4])’’

a2{1] ~> o

a2[2) -> 0

a2[3) -> (P

a3ft] -> 0

a3(2] -> o

a3[3} -> (sf2)»’

a4ft] => 0

v v
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ad4[2] => 0

a4[3] -> (s[3*

aS[{] -> JACRI63[4] - JACR{{S[4] (phi[i1])** - JACR{20{4) (phi(12])*’
a2 (philto])

a5{2) -> JACR{63[S] + -- - - JACR120(S] (phi(12])**

a5(3] -> JACR163[6)
a6[1] > 0
as[2] -> 0
a6[3]1 -> (a[4)*’
al (betal2])??

aT{i] -> JACRI6I[4] ¢ ~rm-==eromoew + ADH22411, 3] (s[1D)*?

+

a7[2} -> JACRI6S[S] + JACR123[5] (beta[1])'? + Sin[betal1]] (s[1])’?
a7[3] -> JACR169[6] + ADN224(3, 3) (s[1>*

al (beta[4])**

-------------- + ADH227[f, 3] (s[2])7’

v

a8[1] -> JACRI73[4]

+

ag[2] => JACRL73[S] + JACRI26(S] (beta[3]1)’* + Sin([betal3]] (s[2])'*
ag[3) ~> JACRI73[6] + ADH227(3, 3] (al2])'’
at (beta(6])??

a9{1) - JACRITT[4]} ¢ =~~-=-wwmocenn + ADH230(1, 3] (2[3D*’

+

a8{2] -> JACRI7T[S] + JACRL29[S] (bata(51)** + Sin[beta5]] (s[3])**
a8(3] -> JACRI77[6] + ADH230[3, 3) (s{3})**

atifi) -> o

al1[2] -> JACRI8O[5] + Sinldelta[3]] (s[4])**

al1[3] => h2 (delta{31)’’ + Cos[delta[3]] (s[4])**

a1o[1] ~> o

a10{2] -> JACRi84{S] + ADHIS1[3, 4] (delta[3])'* + ADH233[2, 3] (s[4])’’
a10{3} -> JACRi84[6] ~ ADHiS1{2, 4] (deltal3])'* + ADH233[3, 3] (s[4])’’
a2t} -> o

at2[2)} -> JACR182[5] + ADH109{3, 4] (delta[3])** + ADH234[2, 3) (s[4D)"?

af2[3] -> JACR188([6] - ADH{09(2, 4] (delta[3])'* + ADH234(3, 3] (s[4])"
ai3[i] -> o0
a13[2] -> JACRI9L[S) + Sin(delta[4]] (s[4])7*
~(f (deltal£])>")
a13[3] => —m-c---mmeemeonee + Cos[deltal4])) (s[4])*’
2
d (beta[f2])'?
af4[1} > JACRLST[4] + -==mmmmmmmemne + JACR143(4] (deltaf2])?’ +

> JACR144[4) (delta[3])’' + ADH240([1, 3] (s[4])*’
al4{2) -> JACRIS7[5] + JACRt42(S} (beta{i1])'’ +
> JACR143[5] (delta[2])'* + JACRI44[5] (deltal3])’*' +
> ADH240[2, 3] (s[4]1)’*
at4[3] => JACRIST[6] + JACRI43[6] (delta[2])’? +
> JACR144(6] (delta[3])’’ + ADH240(3, 3] (s[4])'’
d (beta[10])>®
a15[1]1 -> JACR203[4) + ~=-~--c-mo==-- + JACRI48[4] (deltal1])’> +

> JACR149[4] (delta{31)'* + ADH247[1, 3] (s[4D)'*

af5[2]} -> JACR203[S5] + JACR147(5]) (beta[9])’’ + JACRL4B[S] (deltaft])’’ +
> JACR149{5] (deltaf3))’> + ADH247[2, 3] (s[41)*’

alS[3] -> JACR203[6] + JACR148{6]} (delta[i])’’ +

> JACRL4S[6] (delta[3])’? + ADH247[3, 3] (s[4])’'

al6[1] -> JACR152[4]) (delta[4])'* + ADH250[1, 3] (a[4])*’

a16(2] -> JACR207[5] + Sin[delta[4]] (s[41)'*

al6{3) -> JACR152[6] (delta{4])’> + ADH250(3, 3) (s[4])’




